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1 Introduction

Economic theory and good practice suggest that a government should run a
deficit during recessions, when tax revenues are low and government spending
is high due to fiscal stabilizers like unemployment subsidies. The same holds
during periods of temporarily high spending needs, when a government must
cope with catastrophes such as financial crises, natural disasters, or wars.
These deficits should be balanced by surpluses during economic booms and
when spending needs are low.1 As global economies recover from the COVID-
19 crisis and return to growth, fiscal consolidations play a crucial role in bal-
ancing government budgets and bringing sovereign debt below the “maximum
sustainable debt” threshold (see e.g., Collard, Habib, and Rochet (2015)).2 In
this context, understanding the transmission mechanism and output effects of
fiscal consolidations is crucial for policymakers hoping to design optimal fiscal
adjustment plans.3

As recently reported in Ramey (2019), the fiscal policy literature has con-
sistently found a new empirical fact: fiscal consolidations due to higher taxes
imply larger output losses compared to consolidations due to reductions in
government spending. This pattern has been confirmed in recent studies
which compare the effects of austerity measures across a panel of countries
(see e.g., Guajardo, Leigh, and Pescatori (2014) and Alesina, Favero, and
Giavazzi (2015)). However, there is little work investigating the underlying
reasons for such an asymmetric response.

In this paper, we explore production networks as a potential explanation for
the asymmetric output response of fiscal consolidations. Contrary to existing
literature, we restrict our analysis to one single country, namely, the United
States. This has two main benefits. Firstly, we are able to estimate effects
specific to the US and thus provide more reliable guidance from a policy-
making perspective, as multi-country analysis tends to report country-average
effects. Secondly, we are able to exploit rich industry-level data to track the
effects of fiscal consolidations at a more disaggregated level. As a result, we
shed light on the transmission mechanism of fiscal policy and quantify its

1 Steigum and Thøgersen (2003) show in a two-sector model with overlapping generations
that fiscal deficits benefit only present generations. Sooner or later the fiscal austerity is
needed.

2On April 25th 2020, in an article entitled “After the disease, the debt”, The Economist
wrote: “... governments should prepare for the grim business of balancing budgets later in
the decade.”

3For a literature survey on sovereign debt, see Panizza, Sturzenegger, and Zettelmeyer
(2009) and Reinhart and Rogoff (2009).
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propagation through the industrial network.
In particular, we motivate our work with the following questions. What

are the effects of fiscal adjustments in the United States? Are tax-based fiscal
consolidations more recessionary than expenditure-based consolidations, as
highlighted by the country-panel analysis? Can asymmetries in the input-
output network explain this difference? To provide an answer, we study the
effects of fiscal consolidations implemented in the Unites States from 1978 to
2014. These effects propagate through a 62-industry production network.
Regarding the first two questions, we find that tax-based (TB henceforth)
fiscal adjustments have a recessionary output multiplier over two years of -
1.4% while the effects of expenditure-based (EB henceforth) fiscal plans are not
statistically different from zero. These results are in line with those obtained
by the current state of the literature which uses a panel of OECD countries.
Moreover, we answer the third question using spatial econometric techniques,
assuming that the observed units, 62 industries, are “spatially connected”
via an input-output production network. The spatial framework allows us to
decompose the aggregate total effects of fiscal consolidations into a direct and
a network effect. The former represents the direct impact of the fiscal shock
on each industry while the latter represents the spillover effects from other
industries hit by the same aggregate shock. In turn, we are able to investigate
if the stronger recessionary effects of TB fiscal consolidations relative to EB
are explained by differences in the network propagation mechanism of these
shocks.

Our baseline results suggest that 27% of the total effect of TB fiscal consol-
idations come from network spillovers. On the other hand, network effects of
EB plans are more modest and less robust, with only 11% of the total output
effect coming from the network. Overall, the stronger network effect of TB
plans explains close to one-fourth of the differences in the total effects of TB
and EB plans. Networks thus provide a partial explanation of asymmetry in
the output response of these two types of fiscal consolidations.
In addition to these results, this paper has two other original contributions.
To the best of our knowledge, we are the first to study and detect input-output
spillovers of taxes. We find that a few key suppliers in the economy are re-
sponsible for most of the network propagation of tax shocks.4 This result is
consistent with Ozdagli and Weber (2017), who study upstream propagation
of monetary policy shocks. As noted in Ozdagli and Weber (2017), spatial

4Key suppliers in the network are: Fabricated Metal Products, Primary Metals, Whole-
sale Trade, Plastic and Rubber Products, Chemical Products, Real Estate, Administrative
Services, Miscellaneous Professional, Scientific and Technical Services.
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models of the macro-economy are a useful tool for understanding the sources
and transmission mechanism of aggregate shocks. As far as we know, recently
there is a growing literature, which makes use of this class of models in macro
including but not limited to Ozdagli and Weber (2017), and Di Giovanni and
Hale (2021).

Related Literature

First of all, our paper relates to the literature of fiscal consolidations: Gua-
jardo, Leigh, and Pescatori (2014), Alesina, Favero, and Giavazzi (2015) and
Alesina, Barbiero, et al. (2017). Unlike these papers, we consider a panel of
US industries rather than countries, and we are the first to study the network
effects of fiscal consolidations.
Alesina, Barbiero, et al. (2017) also propose a theoretical explanation for the
stronger effect of TB fiscal consolidations. They introduce the possibility of
persistent adjustment plans in a standard New Keynesian framework to show
that when fiscal adjustments are close to permanent, spending cuts are less re-
cessionary than tax hikes. Karamysheva (2022), using the VARX model, offers
another explanation of more recessionary effects of TB plans, based on finan-
cial market and uncertainty channels. Brinca et al. (2021) provide evidence
both theoretically and empirically that income inequality plays an important
role in explaining the transmission mechanism of fiscal consolidation. On the
other hand, we provide an alternative, network-based explanation of the asym-
metric output effects of TB and EB plans.
Secondly, our work relates to the seminal works of Gabaix (2011), Acemoglu,
Carvalho, et al. (2012), which develop the role of production networks in am-
plifying the effects of localized shocks.5 However, unlike these papers, our work
adopts a spatial framework to determine the extent to which the total effects
of fiscal policy can be attributed to network transmission. This point has been
highlighted in Ozdagli and Weber (2017), who perform a similar analysis to
study the propagation of monetary policy shocks in the US stock market.
Acemoglu, Akcigit, and Kerr (2016) study the asymmetric propagation in the
production network of demand and supply shocks. In particular, they find that
government spending shocks uniquely propagate upstream in the production
network, from customers to suppliers. Bouakez, Rachedi, and Santoro (2020a)

5Other recent theoretical and empirical contributions include, but not limited to Baqaee
and Farhi (2018), Baqaee and Farhi (2019a), Baqaee and Farhi (2019b), Barrot and
Sauvagnat (2016), Boehm, Flaaen, and Pandalai-Nayar (2019). Carvalho and Tahbaz-Salehi
(2019) summarize the literature providing both theoretical foundation for production net-
works as a propagation channel as well as evidence from growing empirical literature.
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find that the sectors that react the most to government spending shocks are
those located upstream in the production network, and Bouakez, Rachedi, and
Santoro (2020b) show that the aggregate multiplier is relatively larger when
government spending is tilted towards downstream industries. Unlike them,
we study empirically the propagation of a special type of fiscal shock, namely
TB and EB fiscal consolidations.
Thirdly, this work relates to the literature on fiscal policy at an industry level:
Ramey and Shapiro (1999), Perotti (2007) and Nekarda and Ramey (2011). In
particular, Nekarda and Ramey (2011) focus on government purchases in man-
ufacturing industries and find evidence in support of the Neo-Classical model.
They also construct a comprehensive measure of government purchases which
takes into account downstream linkages. Building on this work, we provide
analysis of the transmission mechanism of fiscal policy at an industry level.
Additionally, we enrich this analysis by using all the industries in the economy
and by integrating them into a production network.
Cox et al. (2020) study public procurement contracts and find large sectoral
bias in government spending. Our industry analysis thus takes into account
the sectoral heterogeneity of fiscal policy effects. Auerbach, Gorodnichenko,
and Murphy (2019) use city-level data on local defense public procurement
and find large fiscal (first-order) spillovers among industries. Their results
contradict our finding of weak propagation of EB plans. However, it is hard
to provide a direct comparison between our two results since we use different
levels of aggregation and we study the effects of fiscal consolidations.

The rest of the paper is organized as follows. In Section 2, we illustrate how
fiscal adjustment plans identify exogenous fiscal consolidation policies. This
section also studies the aggregate effects of fiscal consolidations and provide a
theoretical rationalization of the underlying transmission mechanism. Section
3 illustrates our results. Section 4 provides some robustness checks and Section
5 concludes.

2 Fiscal Adjustments Plans in the US

Measuring the propagation of fiscal adjustments requires the identification of
an exogenous demand and supply shocks. Our identification strategy thus
relies on the narrative analysis of fiscal adjustment plans. This strategy is
a recent innovation in the fiscal policy literature and employs narrative ex-
ogenous shocks as a proxy for fiscal consolidation policies. This strategy was
introduced in Alesina, Favero, and Giavazzi (2015) to take into account the
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fact that fiscal adjustments are implemented through multi-year plans with
both an intertemporal and an intratemporal dimension.
The intratemporal dimension refers to the fact that fiscal consolidations are
implemented with a mix of tax increases and spending cuts. Tax and the
expenditure components of the adjustments are correlated since governments
decide first on the size of the adjustment, and then on its composition in terms
of expenditures and revenues. The intertemporal dimension is important since
fiscal adjustments are implemented via multi-year plans with measures upon
announcement (the unanticipated component of the plan) and measures an-
nounced for subsequent years (the anticipated component of the plan). In
particular, each country has a specific “recipe” to implement fiscal consoli-
dations: some countries prefer to unexpectedly raise taxes without cutting
expenditures, while others announce large future cuts in spending and only
marginally increase taxes. Alesina, Favero, and Giavazzi (2015) refer to this
as the country-specific “style of the plan”.
These complications make identifying pure and isolated tax hikes and spend-
ing cuts during years of fiscal consolidation a difficult, if not impossible, task.
Fiscal plans provide an effective tool to circumvent these difficulties when
studying austerity policies.

2.1 Modeling Fiscal Plans:

From a mathematical standpoint, plans are sequences of fiscal corrections,
announced at time t and implemented between t and t + K, where K is the
anticipation horizon. In each year t, two types of fiscal corrections are possible:

1. The unanticipated fiscal shock , that is, the surprise change in the pri-
mary surplus at time t, which we denote by:

fut := taxut + exput ,

where taxut is the surprise increase in taxes announced and implemented
at time t, while exput is the surprise reduction in government expenditure
also announced and implemented at time t.

2. The anticipated fiscal shock : the change in the primary surplus at time
t, which had already been announced in the previous years and is either
implemented in year t or scheduled to happen within K years. In par-
ticular, we denote as taxat,j and expat,j the tax and expenditure changes
announced by the fiscal authorities at date t with an anticipation horizon
of j years (i.e., to be implemented in year t+ j). Therefore, we further
distinguish between:
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(a) The anticipated implemented shock : scheduled in the past and im-
plemented in year t:

fat := taxat,0 + expat,0

(b) The anticipated future shocks : sum of scheduled tax and govern-
ment spending changes which have to be implemented within K
years from their announcement:

f ft :=
K∑
j=1

taxat,j +
K∑
j=1

expat,j.

In a fiscal adjustment database, as long as no policy revision takes place,
the anticipated shocks roll over year-by-year. In formulae:

taxat,j = taxat−1,j+1︸ ︷︷ ︸
Old shock, rolled over

expat,j = expat−1,j+1︸ ︷︷ ︸
Old shock, rolled over

.

However, if from one year to another, a policy revision takes place, then,
the new anticipated future shock will embed such change:6

taxat,j = taxat−1,j+1︸ ︷︷ ︸
Old shock, rolled over

+
(
taxat,j − taxat−1,j+1

)︸ ︷︷ ︸
Policy Revision

, with j ≥ 1

expat,j = expat−1,j+1︸ ︷︷ ︸
Old shock, rolled over

+
(
expat,j − expat−1,j+1

)︸ ︷︷ ︸
Policy Revision

, with j ≥ 1

We adopt the annual database on fiscal adjustment plans constructed by
Alesina, Favero, and Giavazzi (2015) and consider only fiscal consolidations
that occurred in the US from 1978 to 2014. They identify fiscal adjustments
exogenous with respect to output fluctuations using a narrative identification
method. This approach is similar to C. D. Romer and D. H. Romer (2010),
who identify exogenous tax shocks from presidential speeches, congressional
debates, budget documents, and congressional reports. From these documents,
they identify the size, timing, and principal motivation for all major postwar
tax policy actions. Legislated changes are then classified into two categories:

6In the above expression j ≥ 1 since any policy revision introduced upon implementation
(j = 0) is no longer a part of an anticipated shock; in fact, it is a new unanticipated
component.
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1) endogenous, if induced by short-run counter-cyclical concerns; 2) exoge-
nous, if taken in response to the state of government debt (deficit-driven).7

As mentioned earlier, fiscal adjustment plans allow us to control for the in-
tertemporal and intratemporal correlation, which we report in Table I:

Table I: Inter- and Intra-temporal correlation matrix of Fiscal Adjustments Plans in the US

taxut taxat,0 taxft exput expat,0 expft

taxut 1 0.041 0.570 0.596 -0.126 0.105
taxat,0 1 0.038 0.098 0.361 0.310

taxft 1 -0.047 0.019 0.180

exput 1 -0.050 0.014
expat,0 1 0.782

expft 1

Table I: linear correlation matrix of legislated changes in taxes and expenditure identified by
the narrative analysis. Sample: annual data from 1978 to 2014 of US fiscal adjustment plans
from Alesina, Favero, and Giavazzi (2015). In blue is reported the intra-temporal correlation
(between each component of taxes and expenditures. In green is the inter-temporal correlation
(within tax or expenditure component, but between components with different timing). In
black we have a mix of the two: correlation between tax and expenditure components with
different timing.

Notice from Table I that the intra-temporal correlation between unantici-
pated tax and unanticipated expenditure adjustments is 60% (blue figures in
Table I). Similarly, the (inter-temporal) correlation between future and an-
ticipated components of expenditure is 78% (green figures in Table I). As
both the inter-temporal and the intra-temporal dimension matter, it is worth
considering multi-year fiscal plans instead of individual measures of tax and
government spending shocks.
Since this source of correlation confounds the effects of taxes and expendi-
tures, we need to classify plans into mutually exclusive categories which can
be simulated independently. We can then take into account the inter-temporal
correlation within each category. To this end, we exploit the fact that not all
the plans are the same. Some fiscal plans are designed to increase taxes more
than cut expenditures and are labeled as TB (tax-based). On the contrary,
those plans which rely more on expenditure cuts rather than tax hikes are

7Concerning expenditure shocks, we emphasize that Alesina, Barbiero, et al., 2017 dis-
entangle transfers from taxes and government spending. They show that the difference in
output responses is not driven by the inclusion of transfers among other public spending
measures.
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labeled as EB (expenditure-based).
For instance, the criterion which determines whether a fiscal consolidation is
labeled as TB can be written:(

taxut + taxat,0 +
K∑
j=1

taxat,j

)
︸ ︷︷ ︸

overall tax hike in t

>

(
exput + expat,0 +

K∑
j=1

expat,j

)
︸ ︷︷ ︸

overall expenditure cut in t

. (1)

Criterion (1) is saying that if the overall tax hike in year t exceeds the overall
spending cut, then we label year t as a year of TB fiscal consolidation. We
keep track of these years by constructing two dummy variables, TBt and EBt,
which are equal to one if year t is labeled as TB or EB, respectively. By
construction, TB and EB plans are mutually exclusive. That is, EB and TB
plans cannot occur simultaneously. This lets us simulate separately the effect
of TB and EB plans while preserving, within each type of plan, the observed
intra-temporal correlation between adjustments on government’s revenues and
expenditure.
Figure 1 plots our fiscal adjustment plans database. This contains all of the
nominal changes in taxes and expenditure, scaled by GDP of the year before
the consolidation occurs to avoid potential endogeneity issues. Moreover, the
future component of the fiscal adjustment plan has a maximum anticipation
horizon of three years (K). This is in line with the small numbers of occur-
rences of policy shifts anticipated four and five years ahead, and is consistent
with the database in Pescatori et al. (2011). The top row of Figure 1 illustrates
the three components of fiscal adjustments interacted with the dummy TBt to
identify the components of tax-based fiscal consolidations. The bottom row
does the same for expenditure-based fiscal consolidations.

We assess the goodness of our orthogonalization criterion (1), by showing
in Figure 2 the share of tax increases and spending cuts of each total fiscal
adjustment, fut + fat + f ft .

Figure 2 shows that the labeling of fiscal adjustment into EB or TB plans,
by means of criterion (1), is never marginal: i. TB plans are all pure tax hikes
except for the year 1988, which is the result of a hybrid fiscal plan with only
30% in spending cuts; ii. EB plans are mainly made up of spending cuts with
only 20% of policy changes coming from a tax increase, on average. Figure 2
also illustrates the timing of fiscal consolidations in the US: i. there are two
periods of TB fiscal adjustments (TBt = 1) between 1978-1981 and 1985-1988;
ii. there are three periods of EB fiscal adjustments (EBt = 1) between 1990-
1992, 1993-1998 and 2011-2013.
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Figure 1: Fiscal Adjustments Plans - United States 1978-2014
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Figure 2: Fiscal Adjustment Composition

1980 1985 1990 1995 2000 2005 2010 2015
0

0.2

0.4

0.6

0.8

1
Tax Rise

Spending Cut

1980 1985 1990 1995 2000 2005 2010 2015
0

0.2

0.4

0.6

0.8

1
Tax Rise

Spending Cut

To summarize, we classify fiscal consolidations into TB and EB fiscal ad-
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justment plans to account for the observed correlation between tax and expen-
diture adjustments. This correlation comes from the fact that policy makers
implement fiscal consolidations by adopting multi-year fiscal plans with both
tax hikes and spending cuts.

Finally, we highlight that fiscal consolidations censor changes in G and
T above and below 0, respectively, by construction.8 Therefore, estimates of
their economic effects are valid for this type of fiscal policy only. Simply put,
we do not estimate tax and government spending multipliers.9 However, if the
United States plans to undertake either a TB or an EB fiscal consolidation,
our estimates are externally valid and can be used as a benchmark for policy-
makers.

2.2 Aggregate Effects of Fiscal Consolidations in the US

The first step of our analysis is to study the aggregate effects of fiscal con-
solidations in the US. We estimate the impulse response functions of EB and
TB plans using a truncated moving average (MA) representation as in C. D.
Romer and D. H. Romer (2010) but where the shocks are given by the fiscal
consolidations as in Alesina, Favero, and Giavazzi (2015). So we simulate the
response to an unanticipated component taking into account that it is accom-
panied by the announcement of future changes. Following Alesina, Favero,
and Giavazzi (2015) we compute impulse response functions as a difference
between the forecast obtained conditionally on a fiscal adjustment plan and
the forecast with no plan.10 Figure 3 shows the estimated cumulative impulse
response function of output and employment growth rates using quarterly data
from 1978Q1 to 2014Q4.

The left panel of Figure 3 shows that TB plans trigger a cumulative drop
of output and employment by 4% and 2% respectively. On the contrary, EB
plans do not seem to be recessionary. This result is in line with the findings
of the fiscal policy literature.

We repeat the analysis on each component of GDP and report the estimated
cumulative impulse response functions in Figure 4.

8We thank Valerie Ramey for bringing up this point.
9Unlike us Zubairy (2014) uses a dynamic stochastic general equilibrium framework to

investigate the transmission mechanism of fiscal multipliers. Moreover, Evans, Honkapo-
hja, and Mitra (2022) show that spending multiplier depends both on the current state of
expectations, as well as the size and duration of the expenditure increase.

10See Appendix A for details on the data and the regression equation.
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Figure 3: Output and Employment Response to Austerity

Cumulative IRFs of Output and Employment growth. The darker region refers to
the 68% confidence level while the lighter region represents the 95% confidence level,
obtained via residual block-bootstrap. Quarterly data. Sample goes from 1978Q1 to
2014Q4. See Appendix A for further details on estimation equation.

We find that TB fiscal plans are associated with lower than average con-
sumption growth while the other components of GDP do not respond. On
the contrary, EB fiscal consolidations exhibit increases in each component of
private GDP which are not statistically significant while government spending
falls significantly.

Having illustrated what happens to all components of output we turn our
attention on the type of fiscal policy change implemented during years of aus-
terity. Firstly, we estimate the effects of fiscal plans on the growth rates of
government receipts shares of output using again a truncated moving aver-
age. Figure 5 shows the cumulative response of government receipts shares of
output coming from excise/production taxes and payroll taxes. Other types
of government receipts such as corporate tax, income tax, estate/gift tax and
custom duties are not affected (see Appendix A).
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Figure 4: GDP by Austerity

Variables are in real dollars (source NIPA). The darker region refers to the 68%
confidence level while the lighter region represents the 95% confidence level obtained
via block-bootstrap. Quarterly data. Sample goes from 1978Q1 to 2014Q4.

Looking at the top-left panel, we find that excise/production taxes are the
main component of government receipt affected by TB fiscal consolidations,
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Figure 5: Government Revenues Affected by Austerity

Cumulative IRFs of government receipts share of GDP. The darker region refers
to the 68% confidence level while the lighter region represents the 95% confidence
level, obtained via residual block-bootstrap as suggested in Jentsch and Lunsford
(2019a). Quarterly data. Sample goes from 1978Q1 to 2014Q4.

increasing its share of GDP by 12% over a three years horizon. On the con-
trary, the change in excise taxes share of output during EB fiscal plans is not
statistically different from zero (see top-right panel). Looking at the bottom
panels, government receipts share of output coming from payroll taxes appear
to increase during both TB and EB fiscal consolidations. This is not surpris-
ing if we look back at Figure 2: EB plans also have a small fraction of tax
increases in their style (i.e. intra-temporal correlation).

Secondly, we study what happens to government expenditures during years
of fiscal consolidations. In particular, we break down government spending,
G, into two components: procurement spending and the residual part of G,
non-procurement spending.11 Figure 6 shows the cumulative impulse response
function of the two components of G as share of GDP. Notice from the right

11We measure procurement spending as done in Briganti and Sellemi (2022).
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column that only EB plans affect government expenditures. In fact, recall
from Figure 2 that TB plans are pure tax hikes.

Figure 6: Government Expenditures Affected by Austerity

Cumulative IRFs of government expenditure two components shares of GDP. The
darker region refers to the 68% confidence level while the lighter region repre-
sents the 95% confidence level, obtained via residual block-bootstrap as suggested
in Jentsch and Lunsford (2019a). Quarterly data. Sample goes from 1978Q1 to
2014Q4.

Overall, the aggregate results show that tax-based austerity plans (i) were
recessionary, (ii) hit especially consumption and (iii) were implemented by in-
creasing payroll and excise taxes. The expenditure side was unaffected. On
the contrary, spending-cuts austerity was characterized by mild and statisti-
cally insignificant increases in output and was mainly done via equal cuts in
procurement spending and the rest of government consumption expenditure.12

12EB plans also increase payroll taxes, however, they account for a minor part of the total
EB plan (see again Figure 2).
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2.3 Fiscal Plans and Production Networks

In the previous section we highlight an important difference between TB and
EB plans: positive changes in excise/production taxes are unique to TB plans
while procurement spending cuts are unique to EB fiscal consolidations. No-
tice that reducing procurement spending and increasing excise/production
have completely different transmission mechanisms. For instance, imagine
a n-sectors static Cobb-Douglas economy as in Acemoglu, Akcigit, and Kerr
(2016). In their model a change in government purchases behaves as a de-
mand shock which propagates upstream in a production network: an industry
affected by a demand shock propagates the shock to all its suppliers of input.
On the contrary, excise/production taxes behave as supply shocks which prop-
agate downstream: an industry affected by a supply shock passes the shock
to all its customers. Step by step, the shock trickles down to consumers. No-
tice that this asymmetric transmission mechanism of taxes and government
purchases is consistent with the asymmetric response of consumption during
years of TB and EB fiscal consolidations.

In this section we explore the theoretical propagation of these types of
fiscal policy through the lens of a simple static model with production network,
which is a slightly modified version of Acemoglu, Akcigit, and Kerr (2016).13

In this model the economy is inhabited by a representative agent with
Cobb-Douglas utility over n-goods. On the production side, the representative
sector i maximizes profits:

max
li,{xij}nj=1

(1− τ) · pi ·

(
l
αli
i ·
( n∏
j=1

x
aij
ij

)ρ)
︸ ︷︷ ︸

:=yi

−wli −
n∑
j=1

pjxij

where τ is the excise/production tax, pi is the price of output i, li is the labor
input of sector i, xi,j is the quantity of intermediate good j purchased by sector
i as input of production, w is the wage and yi is output of producer of good
i.14 The resource constraint of the economy is:

yi = ci +
n∑
j=1

xji +Gi

where ci and Gi are consumption and government purchases of good i respec-
tively, while xji is the quantity of good i used as input of production by sector

13The modifications come from the inclusion of a production tax and an extra parameter
in the production function. We remand to the Appendix E for the detailed derivations.

14Because of constant return to scale we have αl
i + ρ ·

∑n
j=1 ai,j = 1 for all sectors.
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j.

EB Plans

In this static economy a change in government purchases has the following
output effect:15

d log yi = ρ ·
n∑
j=1

aji ·
pj · yj
pi · yi︸ ︷︷ ︸

:= âji

·d log yj +
Gi

yi
· d logGi, (2)

which in matrix form becomes:

d log y
n×1

= ρ · ÂT · d log y + Λ · d logG

where Λ = diag(G1/y1, .., Gn/yn) and Â = [aji · (pj ·yj)/(pi ·yi)]i,j=1,...,n. More-
over, in equilibrium, we also have:

ÂT
n×n
∝
[
pi · xji
pi · yi

]
i,j=1,...,n

=

[
SALESi→j
OUTPUTi

]
i,j=1,...,n

The i − j element of ÂT is proportional to the sales of sector i to sector j,
relative to its output, yi. Therefore, the transmission of government purchases
works from customers (sector j) to suppliers (sector i). Finally, to understand
the transmission mechanism of government purchases, it is convenient to solve
the above expression and then expand it using the definition of geometric sum:

d log y
n×1

=
(
In − ρ · ÂT

)−1

· Λ · d logG

=
(
In + ρ · ÂT + ρ2 · (ÂT )2 + ...

)
· Λ · d logG (3)

Equation (3) is saying that spending cuts propagate upstream in the produc-
tion network. For example, consider a spending cut on good j (i.e. d logGj <
0). Firstly, output is directly reduced and this first order effect is represented
by matrix In in the geometric sum expansion. Secondly, sector j reduces the
amount of input it needs. Therefore, for each sector i, supplier of j, we have
that xji = SALESi→j decreases. This is a second order effect working via ρ·ÂT .
Thirdly, suppliers of suppliers of producer of good j also face an indirect effect
and so on and so forth. Since the propagation of the spending cut happens
from customers to suppliers, we refer to this type of transmission mechanism
as upstream propagation.

15See Appendix E.
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Example: 3 Sectors Economy. We further clarify this type of propagation
using a simple numerical example illustrated in Figure 7. In the example we

Figure 7: Example of Spending Cut

Figure 7: vertically integrated 3 sectors economy. â21 = 0.5 means that sector 1
sells 50% of its output to sector 2. â32 = 0.9 means that sector 2 sells 90% of its
output to sector 3. â231 := â21 · â32 = 0.45, it means that 45% of sector’s 1 output
is indirectly purchased by sector 3 via sector 2.

have an economy with three sectors which are vertically integrated: sector 1
supplies sector 2 which supplies sector 3. The upstream input-output matrix
is given by ÂT , which is sparse everywhere but in positions 1-2 and 2-3, which
reflect the fact that sector 1 supplies sector 2 and sector 2 supplies sector 3.
Moreover, (ÂT )2 represents the second order connection, that is, the suppliers
of the suppliers. This production network is characterized by a single second
order connection: sector 1 indirectly supplies sector 3 via sector 2. In fact,
(ÂT )2 is sparse everywhere but in position 1-3.

Suppose the government cuts by 0.1 the demand from sector 2. Suppose
also that government spending shares of sectoral output are all the same before
the policy change, then, the output effect implied by Equation (3) is:

d log y =

1 0 0
0 1 0
0 0 1

+ ρ

0 0.5 0
0 0 0.9
0 0 0

+ ρ2

0 0 0.45
0 0 0
0 0 0

 ·
 0
−0.1

0

 = −

0.05 · ρ
0.1
0



17



Notice that sector 2 is hit directly by the shock and its output shrinks
exactly by 0.1. Afterwards, the shock travels upstream in the production
network, hitting sector 1 because it is the input-supplier of sector 2. On the
contrary sectors located downstream in the network are not affected. Finally,
the aggregate output effect is given by the average of the sectoral output
changes: d log y = 1/3 · (0.1 + ρ · 0.05). Notice that the stronger the intensity
of the input-output connections, represented by ρ, the stronger the aggregate
output effect.

Therefore, the model suggests that during years of EB fiscal consolida-
tions sectors located upstream in the production network should be negatively
affected by input-output spillovers coming from those cuts in government pur-
chases which we documented in the previous section. Moreover, the total
output effect and the network-effect are proportional to the intensity of the
upstream propagation during those years, represented in the model by ρ.

TB Plans

When the government increases the production/excise tax, the model returns
the following output change:

d log yi = ρ ·
n∑
j=1

aij · d log yj − ψi · d log τi, (4)

where ψi > 0.16 In matrix form the above expression becomes:

d log y
n×1

= ρ · A · d log y −Ψ · d log τ

where Ψ = diag(ψ1, ..., ψn) and A = [aij]i,j=1,...,n. The economic interpretation

of A is the opposite of the one of ÂT . In fact, in equilibrium we have:

A
n×n
∝
[
pj · xij
pi · yi

]
i,j=1,...,n

=

[
SALESj→i
OUTPUTi

]
i,j=1,...,n

that is, the i− j element is proportional to the purchase of good j by sector i
relative to its output, yi. In this case, the transmission mechanism works from
suppliers (sector j) to customers (sector i).

Once again, we solve the above expression and then expand it using the
definition of geometric sum:

d log y
n×1

= −
(
In + ρ · A+ ρ2 · A2 + ...

)
·Ψ · d log τ (5)

16See Appendix E for derivation.
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In this case, the shock propagates in the production network from suppliers
to customers via matrix A. In particular, the underlying transmission of the
shock works through price increases. In fact, in equilibrium we have:

d log pi = ρ ·
n∑
j=1

aij · d log pj +
τi

1− τi
· d log τi.

When taxes increase, production becomes more costly and prices go up. A
price increase impact the direct customers of the taxed producer, which react
by increasing their price too. Eventually, the price-increase trickles down to
consumers who respond by decreasing consumption:

d log ci = −d log pi.

Therefore, we refer to this type of transmission mechanism as downstream
propagation.

Consider the example of the vertically integrated 3-sectors economy of Fig-
ure 7. In this case, a tax specific shock to sector 2, would have a direct effect
on sector 2. Secondly, the shock would travel downstream in the production
network via matrix A and would hit sector 3. The tax increase hits the sup-
plier (sector 2), which increases prices, thus damaging its customer (sector 3).
On the contrary, sector 1, located upstream in the supply chain, would not be
affected by the tax shock.

Therefore, the model suggests that during years of TB fiscal consolidations,
when excise/production taxes were increased, sectors located downstream, as
well as consumers, are hit by negative spillovers from sectors located upstream
in the production network.

3 The Network Effect of Fiscal Plans: Results

In the previous section we illustrated that fiscal policy changes implemented
during years of fiscal consolidations, namely excise/production tax increases
and procurement spending cuts, propagate downstream and upstream in the
production network. In particular, expression (2) suggests that changes in
sectoral output, d log y, during years of EB fiscal adjustment plans, should be
proportional to an upstream spatial lag, ρ · ÂT ·d log y and the spending shock,
that is, the EB fiscal adjustment plan. Similarly, expression (4) suggests that
changes in sectoral output during years of TB fiscal adjustment plans, should
be proportional to a downstream spatial lag, ρ · A · d log y and the tax shock,
that is, the TB fiscal adjustment plan.
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Therefore, the most natural regression equation to test the intensity of the
propagation of fiscal consolidations in the production network is:17

∆ log yi,t = ai +

ρdown ·
n∑
j=1

aij ·∆ log yj,t︸ ︷︷ ︸
∆ydowni,t

+ψi · (τu · fut + τa · fat + τ f · f ft︸ ︷︷ ︸
Tax Increases

)

 · TBt+

+

ρup ·
n∑
j=1

âji ·∆ log yj,t︸ ︷︷ ︸
∆yupi,t

+λi · (γu · fut + γa · fat + γf · f ft︸ ︷︷ ︸
Spending Cuts

)

 · EBt + νi,t

(6)

Firstly, Equation (6) includes industry fixed effects, ai, industry weights
ψi and λi for TB and EB fiscal consolidations respectively and νi,t, a serially
uncorrelated, heteroskedastic error term. We allow for heteroskedasticity since
sectors exhibit different volatility in growth rates in the data. Secondly, the
first line of Equation (6) contains the downstream spatial variable which cap-
tures the downstream spillovers of the unanticipated, announced and future
tax increases. Both are interacted with TBt, the dummy variable which is one
during years of TB fiscal consolidations. Similarly, the second line of Equa-
tion (6) captures the effects of EB fiscal consolidations as well as its upstream
spillovers.

Our econometric specification relates to Alesina, Favero, and Giavazzi
(2015), who regress country-level output growth on the 3 components of TB
and EB country-specific fiscal plans. Unlike them, we focus on a single coun-
try, the United States, by breaking down its economy into n = 62 industries.
Furthermore, we enrich their specification with two spatial variables to take
into account the input-output connections among sectors and break down the
output effect into a direct and a network effects. This is similar to the empir-
ical approach in Acemoglu, Akcigit, and Kerr (2016) and Ozdagli and Weber
(2017).

17We denote the parameters that we estimate in blue.
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3.1 Model Estimation

We focus on a partition of the US economy made by 62 industries, observed
from 1978 to 2014 at a yearly frequency. Details on the data construction are
reported in Appendix B.

We report results based on the static spatial panel autoregressive models
specified by Equation (6). The spatial models allow us to track the effect of EB
and TB fiscal adjustment plans on industry output growth, while controlling
for downstream and upstream spillovers. When estimating the corresponding
parameters, standard OLS delivers inconsistent results since the spatial vari-
ables are endogenous. We overcome this problem using spatial econometric
techniques. In particular, we use a modified version of the Bayesian Markov
Chain Monte Carlo (MCMC) illustrated in LeSage and Pace (2009) to esti-
mate the parameters of equation (6). We also report Maximum Likelihood
Estimates (MLE) for two main reasons: (i) if all priors are non-informative,
then the Bayesian MCMC should exactly return the MLE, (ii) MLE properties
of spatial panel autoregressive models with fixed effects are well known (see
Yu, DeJong, and Lee (2008)).18 The derivation of the Bayesian MCMC and
of the MLE as well as other technical details are remanded to Appendix C.3.

Table II reports descriptive statistics of the estimated parameters of interest
of model (6):

Firstly, looking at Table II, we notice that the maximum likelihood es-
timates are very close to the expected value and standard deviation of the
posterior distributions estimated by MCMC. This is a consequence of using
mainly non-informative priors. Secondly, we notice that during years of TB
fiscal consolidations, the downstream spatial correlation is much stronger than
the upstream spatial correlation during EB fiscal consolidations. In fact, look-
ing at the quantiles of the posterior distribution of ρup, it is clear that it is
much more skewed towards zero than then one of ρdown, and with a posterior
average of 0.25 against 0.57 of ρdown

Concerning the fiscal coefficients, we find that announced tax rises, τa, and
future spending cuts, γf , exhibit a statistical significant recessionary effect,
while the other shocks do not. Their posterior probability of being negative
is 92% and 97% respectively. Interestingly, the effect of announced spending
cuts,γa, is statistically significant and expansionary, or positive.
Nevertheless, the single coefficients of the three components of fiscal adjust-
ment plans are not very informative: we are interested in the convex combi-

18Bayesian MCMC is also more appealing than MLE for some quite technical reasons.
However, we save these details for Appendix C.3. An alternative approach can be a gener-
alized moments estimator offered by Kelejian and Prucha (1999).
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Table II: Estimation Results

Baseline Model - Equation (6)

Parameters
MLE Bayesian MCMC - Posterior Distributions:

θ̂ML
i MLE Std. E(θi)

√
V(θi) Pr(θi < 0) 5% 10% 16% 50% 84% 90% 95%

ρdown (TB) 0.603 0.125 0.569 0.117 0.000 0.374 0.419 0.453 0.569 0.687 0.720 0.761
τu 0.411 1.278 0.555 1.196 0.322 -1.411 -0.971 -0.629 0.551 1.743 2.095 2.533
τa -1.259 0.990 -1.294 0.930 0.917 -2.820 -2.488 -2.218 -1.295 -0.366 -0.100 0.237
τf -0.192 0.432 -0.219 0.404 0.708 -0.887 -0.735 -0.621 -0.220 0.182 0.300 0.447

ρup (EB) 0.271 0.092 0.247 0.096 0.000 0.088 0.121 0.148 0.246 0.343 0.372 0.407
γu -0.167 1.129 -0.132 1.046 0.551 -1.855 -1.460 -1.166 -0.130 0.907 1.207 1.582
γa 0.942 0.616 1.037 0.582 0.038 0.077 0.292 0.461 1.039 1.610 1.779 1.997
γf -0.477 0.283 -0.482 0.261 0.968 -0.908 -0.817 -0.742 -0.481 -0.224 -0.148 -0.053

D2008 -2.941 0.671 -2.903 0.633 1.000 -3.946 -3.714 -3.532 -2.902 -2.274 -2.092 -1.861
D2009 -5.664 0.671 -5.326 0.658 1.000 -6.416 -6.173 -5.981 -5.321 -4.672 -4.488 -4.248

Table II: θi denotes a generic parameter that we estimate. The columns report the following: θ̂ML
i is the ML point estimate; “MLE

Std.” is the standard deviation of the ML estimate, calculated using the analytical Fisher Information Matrix derived in Appendix C.2:√
I (θ̂ML)−1

ii ; E(θi) is the expected value of the posterior distribution;
√
V(θi) is the standard deviation of the posterior distribution;

Pr(θ < 0) is the probability that a parameter is negative, calculated by integrating the posterior distribution; p% is the p-th percentile
of the posterior distribution. For brevity we don’t report here the Industry Fixed Effects and the Industry specific variances. We also
include year dummies for 2008 and 2009 to improve the precision of our estimates by capturing the industry-wide dip caused by the
Great Recession. In the first columns, the spatial parameters also report the type of fiscal plan they are interacted with (in blue).

nation of all three components in a fiscal plan. Similarly, the mere size of the
spatial coefficients is not enough to quantify the aggregate direct and network
effect. We address these issues in the following section.

3.2 Aggregate Output Effect of Fiscal Consolidations

We are interested in estimating the average aggregate output effect of fiscal
consolidations and then breaking it down into its direct and network effect.
Our spatial econometric methodology conveniently provides such a decompo-
sition.
Firstly, fiscal consolidations are made of three components: unanticipated, an-
ticipated, and future. Therefore, we cannot define the impulse response in the
standard way as the the partial derivative of a dependent variable with respect
to a single shock. Rather, we construct the impulse response as a convex com-
bination of the individual derivatives of ∆ log yt with respect to each of the
three components of fiscal consolidations. The weights on each component are
determined by the “style” of the plan, defined analytically as:

sTB︸︷︷︸
3×1

:=
[
suTB saTB sfTB

]T
sEB︸︷︷︸
3×1

:=
[
suEB saEB sfEB

]T
.

For instance, if we want to simulate the effects of a TB fiscal plan which is 30%
unanticipated, 0% anticipated, and 70% future, then we would set: suTB = .3,
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saTB = 0, sfTB = .7 and the vector of the “style” would be: sTB = [.3 0 .7]T .

Secondly, given: i. the above definition of impulse response, ii. the vector
representation of Equation (6), iii. the vectors of fiscal parameters τ T =
[τu τa τf ] and γT = [γu γa γf ] and iv. industry weights for TB plans ΨT =
[ψ1...ψn] and EB plans ΛT = [λ1...λn] ; then, the n × 1 vector of industry
specific Total Effect of a TB plan (TBt = 1 and EBt = 0) is defined as:

TETB := suTB ·
∂∆ log yt
∂fut

∣∣∣
TBt=1

+ saTB ·
∂∆ log yt
∂fat

∣∣∣
TBt=1

+ sfTB ·
∂∆ log yt

∂f ft

∣∣∣
TBt=1

=
(
In − ρdown · A

)−1︸ ︷︷ ︸
:=HTB

· Ψ · τ T · sTB = HTB · Ψ︸ ︷︷ ︸
n×1

· τ T · sTB︸ ︷︷ ︸
1×1

Analogously, for an EB plan we have:

TEEB := (In − ρup · ÂT0 )−1︸ ︷︷ ︸
:=HEB

· Λ · γT · sEB = HEB · Λ︸ ︷︷ ︸
n×1

· γT · sEB︸ ︷︷ ︸
1×1

.

Using the spatial framework, we can break down the TE into a Direct and
Network Effect, as in Acemoglu, Akcigit, and Kerr (2016) and Ozdagli and
Weber (2017). The former represents the direct impact of the fiscal plan and
the latter represents the network spillovers:

DETB = Ψ · τ T · sTB NETB = (HTB − In) ·Ψ · τ T · sTB

DEEB = Λ · γT · sEB NEEB = (HEB − In) ·Λ · γT · sEB.

The TE, DE and NE are n×1 vectors of industry specific effects of fiscal adjust-
ment plans. However, we are interested in their aggregate effect. Therefore,
we take a weighted average across industries with weights given by each indus-
try’s output share.19 By doing so we obtain the Average Total Effect, ATE,
of a fiscal consolidation. We similarly construct the Average Direct Effect,
ADE, and the Average Network Effect, ANE. Notice that given the linearity
of the weighted average operation, we have that ATE = ADE +ANE, which
therefore summarizes the breakdown of the total effect into its two components.

Table III reports descriptive statistics of the posterior distributions of the
ATE and its decomposition into ADE and ANE for 2-year fiscal adjustment

19We use average output shares in years of TB fiscal consolidation for aggregating TB
effects. We use average output shares in years of EB fiscal consolidation for aggregating EB
effects
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plans in the United States. This is our main contribution to the literature on
fiscal consolidations. We obtain these results via Monte-Carlo, by drawing the
parameters of equation (6) from their estimated posterior distributions.20 The
style of the simulated plans, sTB and sEB - which determines the composition
of a fiscal plan in terms of unanticipated, anticipated, and future components
- is randomly drawn at each iteration from a distribution which mimics the
in-sample data and satisfies three conditions: 1) the overall size of a plan is
1%; 2) the anticipated component is zero; 3) the horizon of the plan is two
years.21 This procedure ensures that our results are robust to different styles
of fiscal plans and are not driven by a style redistribution of the 1% fiscal
shock.

Table III: Average Total, Direct and Network Effects of Fiscal Consolidations in the United States

Baseline Model - Equation (6)

E(θ) %
√
V(θ) Pr(θ < 0) 5% 10% 16% 50% 84% 90% 95%

ATETB -1.397 100% 1.109 0.904 -3.297 -2.835 -2.487 -1.346 -0.308 -0.027 0.328
ADETB -1.017 73% 0.789 0.904 -2.327 -2.031 -1.798 -1.006 -0.238 -0.021 0.258
ANETB -0.380 27% 0.337 0.904 -1.014 -0.825 -0.694 -0.328 -0.066 -0.006 0.065

ATEEB 0.370 100% 0.371 0.152 -0.265 -0.103 0.014 0.386 0.727 0.825 0.950
ADEEB 0.326 88% 0.327 0.152 -0.225 -0.088 0.012 0.336 0.643 0.732 0.845
ANEEB 0.043 12% 0.052 0.152 -0.038 -0.014 0.001 0.041 0.090 0.106 0.130

Table III: descriptive statistics of posterior distributions of Average Effects of a 2 years, 1% magnitude fiscal
adjustment plan. 2 years means that results are calculated by cumulating the effect of the first year of the plan
and then the second one. The style of the plan is simulated from a distribution which mimics the observed one;
see Appendix C.3 for technical details. Columns: E(θ) is the expected value of the posterior distribution; % is
the share of ATE represented by ADE and ANE.

√
V(θ) is the standard deviations of the posterior distribution;

Pr(θ < 0) is the probability of negative values, calculated by integrating the posterior distribution; “p%” is the
p-th percentile of the posterior distribution.

In Table III, we document two main facts. First of all, consistent with ex-
isting work, TB fiscal consolidations imply larger output losses than EB fiscal
consolidations. The expected value of ATETB is -1.397 against a positive and
insignificant ATEEB of 0.370. This implies that a 2 years TB fiscal consolida-
tion of 1% causes a cumulative average contraction of -1.397% over two years.
On the other hand, the effects of EB fiscal consolidations are mildly positive
and not statistically significant.
Secondly, around 27% of ATETB comes from network spillovers, confirming the
relevance of the industrial network in the transmission of the TB fiscal adjust-
ments. On the contrary, the network propagation of an EB fiscal plan is much

20In doing so we draw all the parameters jointly from each step of the Markov Chain to
take into account the potential correlation among the parameters’ distributions.

21See Appendix, section C.4, for further information on the empirical distribution of the
style of US fiscal plans.
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smaller, accounting for only 12% of ATEEB. We calculate the average extent to
which differences in the network effects of EB and TB plans account for differ-
ences in their total effects: |E(ANETB)− E(ANEEB)| / |E(ATETB)− E(ATEEB)|.
We find a value of approximately 25%.22 Therefore, we conclude that at least
25% of the difference between EB and TB output effects can be explained by
differences in production network spillovers.

We summarize our findings so far. TB fiscal consolidations have stronger
effects in the United States than EB fiscal consolidations, with an average
two years contraction of around -1.4%. EB fiscal consolidations in the United
States have effects which are either not statistically different from zero, or
mildly expansionary after two years.23 Network effects of TB consolidations
explain 27% of the overall contraction. On average, 25% of the differences
in the ATE of TB and EB plans can be attributed to the stronger network
propagation of TB fiscal consolidations.

4 Robustness

4.1 Spatial Model and Orders of Propagation

An alternative to spatial lags in our econometric model is a standard panel
data model with several “cross-terms” representing the first-order, second-
order, and higher-order degrees of connection, as in Hale, Kapan, and Minoiu
(2019). However, this methodology requires a large number of parameters to
be estimated, especially when the network is persistent, and when higher-order
propagation effects are relevant. On the contrary, a spatial variable is capable
of capturing the entire feedback effect with an infinite number of orders of
connection whose impact decays geometrically.
In order to assess whether the US industrial network with n = 62 sectors
generates relevant high-order spillovers, we perform the partitioning of the
effect, similar to what suggested by LeSage and Pace (2009). For instance, for
the downstream propagation, we have:

(In − A)−1 · 1n︸ ︷︷ ︸
Total Effect

= 1n︸︷︷︸
Direct

+ A · 1n︸ ︷︷ ︸
1st order In-degree

+ A2 · 1n︸ ︷︷ ︸
2nd order In-degree

+ ...

22From Table III, we have: |−0.380− 0.043| / |−1.397− 0.370| ≈ 25% in the baseline
model and |−0.300− 0.031| / |−1.148− 0.522| ≈ 20% in the inverted model.

23This is in line with Alesina, Favero, and Giavazzi (2020).
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where the term in-degree refers to the fact that the row-sum of the elements
of A represents the weighted in-degree of the network (total share of input
purchased by a sector). For the upstream propagation, we have:

(In − ÂT )−1 · 1n︸ ︷︷ ︸
Total Effect

= 1n︸︷︷︸
Direct

+ ÂT · 1n︸ ︷︷ ︸
1st order Out-degree

+ (ÂT )2 · 1n︸ ︷︷ ︸
2nd order Out-degree

+ ...

where the term out-degree refers to the fact that the row-sum of ÂT represents
the weighted out-degree of the network (total share of output sold to other
sectors).24 By averaging across the 62 industries the above expressions, we can
calculate how much of the average total effect (left hand side of the expressions)
can be attributed to each order of propagation (addends of the right hand side
of the expressions). The results are reported in Table IV

Table IV: Partitioning of the network

Order
Downstream Network Upstream Network

% Cumulative % Cumulative

0 (Direct) 53.36% 53.36% 54.53% 54.53%
1st 24.53% 77.89% 23.34% 77.86%
2nd 11.49% 89.39% 11.33% 89.20%
3rd 5.48% 94.87% 5.52% 94.72%
4th 2.64% 97.51% 2.70% 97.42%
5th 1.28% 98.79% 1.32% 98.74%
...

...
...

...
...

Notice that, consistent with Acemoglu, Carvalho, et al. (2012) and Car-
valho (2007), the first two orders of the in-degrees and out-degrees are enough
to capture most of the spillovers, roughly 89% of the overall effects. However,
to capture the whole scope of network effects we should add terms up to the 5th
order, which account for almost 99% of the total effect. Since we have 6 “core
regressors” (TB and EB unanticipated, announced, and future components),
the adoption of cross terms which capture the order of propagation, would
require us to include 6 times 5 orders plus one (the Direct effect) for a total of
36 core regressors. Considering this unfeasible econometric specification, we
opt for the more parsimonious spatial lag.

24For more on in-degrees and out-degrees of the industrial network see Acemoglu, Car-
valho, et al. (2012) and Carvalho and Tahbaz-Salehi (2019).
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4.2 Dynamics and Delayed Network Effects

The baseline model specified by Equation (6) does not include any time lag. We
adopt a fully static specification because annual industry value-added growth
rates are not very persistent, in particular at the fine disaggregation level of 62
sectors. Nevertheless, few sectors still show a non-negligible degree of autocor-
relation. Therefore, we check whether our results are robust to the inclusion
of a lagged dependent variable and we augment Equation (6) with a time lag:
φi ·∆ log yi,t−1 The results are summarized by cumulative dynamic ATE, ADE
and ANE, which now take the form of cumulative impulse response functions,
reported in Figure 8. The values of the median of the dynamic ATE, ADE
and ANE (blue solid lines in Figure 8) are reported in Table V.
Notice that after year 2, the end of the fiscal consolidation, the dynamic

Figure 8: Cumulative Impulse Response Functions

Figure 8: blue solid lines are the median cumulative impulse response functions (median of
the posterior distributions). Red dashed lines are the 5th and 95th percentile of their posterior
distributions, which represent our confidence bands. The “shock” is constructed by simulating
a two years fiscal adjustment plan of 1% of GDP, exactly as done earlier to derive our static
baseline results.

response is minimal, which corroborates our static analysis. In general, the
effects are slightly larger in year 2 compared to the ones estimated in the static
model and reported in Table III. Except for this, the results are comparable: 1)
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Table V: Median Cumulative Impulse Response Functions

1 year % 2 years % · · · Long Run %

ATETB -0.695 100% -1.865 100% · · · -2.351 100%
ADETB -0.526 76.7% -1.403 75.2% · · · -1.683 71.6%
ANETB -0.162 23.3% -0.445 24.8% · · · -0.644 28.4%

ATEEB -0.523 100% 0.486 100% · · · 0.628 100%
ADEEB -0.472 90.2% 0.433 89.1% · · · 0.573 91.2%
ANEEB -0.049 9.8% 0.041 10.9% · · · 0.063 8.8%

TB fiscal consolidations are recessionary and statistically different from zero;
2) the network effect is around one-fourth of the total effect of a TB plan; 3)
EB fiscal consolidations have a minor network effect in the order of 10% of the
total effect; 4) EB fiscal consolidations seem to be expansionary, but nothing
can be concluded since they are not statistically different from zero.

We conclude this section by highlighting one fact: from Table V we notice
that the relevance of ANETB increases over time, from 23.3% to 28.4% in the
long-run. This could be indicative of delayed network effects. Suppose a price
shock takes longer than a year to travel from one sector to another, then the
relevance of the network effect will increase over time since the spillover takes
time to kick-in. For instance, Smets, Tielens, and Van Hove (2019) show that
the autocorrelation between inflation in crude oil’s price and synthetic rubber’s
price spikes after three months. Then the autocorrelation between inflation
in synthetic rubber’s price and tires’ price also spikes after three months, but
the autocorrelation between inflation in tires’ price and transport costs spikes
after 16 months. Therefore, downstream propagation of price changes does
seem to have delayed effects consistent with the increasing relevance over time
of the network effect of TB fiscal adjustments. We leave the issue of timing of
the network effect for future research.

4.3 Inverted Propagation Mechanism

The baseline regression equation, Equation (6), implicitly assumes that TB
fiscal consolidations exclusively propagate downstream, from suppliers to cus-
tomers while the opposite is true for EB fiscal consolidations. This is done by
interacting TBt with ∆ydown

i,t and EBt with ∆yup
i,t . This assumption is consis-

tent with the theoretical propagation suggested by the model.
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We now relax the assumption above and we switch the interaction of our
dummies with the spatial variables. Therefore, we estimate the following equa-
tion:

∆ log yi,t = α̃i +

ρ̃down ·∆yupi,t + ψi · (τ̃u · fut + τ̃a · fat + τ̃ f · f ft︸ ︷︷ ︸
Tax Increases

)

 · TBt+

+

ρ̃up ·∆ydowni,t + γi · (γ̃u · fut + γ̃a · fat + γ̃f · f ft︸ ︷︷ ︸
Spending Cuts

)

 · EBt + ν̃i,t.

(7)

Another option is to consider all propagation channels at once by estimating
a single larger model which nests both Equation (6) (baseline model) and (7)
(inverted model). However, this option is intractable due to the large number
of parameters relative to the sample size, and due to collinearity between the
spatial variables. We therefore estimate two separate models and then we
apply a Vuong test for non-nested models to see which one fits the data better
(see Vuong (1989) and Wooldridge (2010)). We find that the theoretically
consistent model of Equation (6), where TB shocks propagate downstream
and EB shocks upstream, provides a better fit to the data but not enough to
reject the null hypothesis of the Vuong test, which assumes that the two model
describe the data equally well.25

Secondly, we use the new estimates from the inverted model of Equation
(7) to calculate the total, direct and network effect.26 We find the network
effect of EB plans accounts for only 6% of their total effect, against the 12%
of the baseline model. On the contrary, the relevance of network effects of TB
plans is basically unaffected, diminishing only by 1% relative to the baseline
model (from 27% to 26%). Moreover, its statistical significance declines, since
the posterior distribution shrinks towards zero.

Overall, the results indicate that the baseline model, which is consistent
with the theoretical transmission channel illustrated in Section 2.3, delivers
slightly stronger network effects and a slightly better fit.

4.4 Spurious Correlation and Placebo Experiments

One result of the paper is to record significant network effects of TB fiscal
consolidations, accounting for 27% of the total effect, and capable of explaining

25Derivation and details of the Vuong test are outlined in Appendix D.1.
26Tables of results are reported in Appendix D.2.
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up to one fourth of the differences between the total output effect of TB and
EB fiscal consolidations. What feature of the network is at basis of such strong
spillovers? Are we measuring spurious correlation between sectors? or are we
capturing some deep structural feature of the industrial network?
First of all, we plot in Figure 9 the downstream network A associated with the
downstream propagation of TB fiscal consolidations. Recall that the generic
element of A, denoted by aij, is given by the reliance of sector i (row) on
industrial input j (column): SALESj→i/SALESi.

Figure 9: Small, medium and large elements of Downstream Network A
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Forestry, fishing, and related activities

Oil and gas extraction
Mining, except oil and gas

Support activities for mining
Utilities

Construction
Wood products

Nonmetallic mineral products
Primary metals

Fabricated metal products
Machinery

Computer and electronic products
Electrical equipment, appliances, and components

Motor vehicles, bodies and trailers, and parts
Other transportation equipment
Furniture and related products
Miscellaneous manufacturing

Food and beverage and tobacco products
Textile mills and textile product mills

Apparel and leather and allied products
Paper products

Printing and related support activities
Petroleum and coal products

Chemical products
Plastics and rubber products

Wholesale trade
Retail trade

Air transportation
Rail transportation

Water transportation
Truck transportation

Transit and ground passenger transportation
Pipeline transportation

Other transportation and support activities
Warehousing and storage

Publishing industries, except internet (includes software)
Motion picture and sound recording industries

Broadcasting and telecommunications
Data processing, internet publishing, and other IT services

FED banks, credit intermediation, and related activities
Securities, commodity contracts, and investments

Insurance carriers and related activities
Funds, trusts, and other financial vehicles

Real estate
Rental and leasing services and lessors of intangible assets

Legal services
Computer systems design and related services

Miscellaneous professional, scientific, and technical services
Management of companies and enterprises

Administrative and support services
Waste management and remediation services

Educational services
Ambulatory health care services

Hospitals and nursing
Social assistance

Performing arts, spectator sports, museums, and related act.
Amusements, gambling, and recreation industries

Accommodation
Food services and drinking places

Other services, except government
Gov. Enterprises

Figure 9 is a “threshold heat-map” which reports a blue cell if aij < 0.0001,
an orange cell if aij > 0.03 and a white cell otherwise.27 Two facts are salient
from this “X-ray” of the downstream network. Firstly, the columns of A tend
to contain either only very small or only very large values. Secondly, the

27The choice of 0.0001 is motivated by the presence of several values of A which are close
to zero but not exactly zero. The choice of 0.03 is motivated by the presence of only a few
values above this threshold. In general, tweaking these numbers still allows observing such
a visual pattern of matrix A.

30



rows of A do not exhibit such a pattern. In other words, some sectors, such as
“Social Assistance” or “Motion Picture and Sound Recording Industries”, pro-
duce an output that is either not employed at all as an intermediate by other
sectors, or it is employed only in minor quantity. Unlike them, some other
sectors, such as “Wholesale Trade” and “Miscellaneous Professional, Scientific
and Technical Services”, produce an output which is a key input of produc-
tion for many sectors. The bottom line is that the US downstream network is
characterized by the presence of key suppliers and the lack of key customers.
This asymmetric nature of the I-O connections is a well-known feature in the
production network literature (see Acemoglu, Carvalho, et al. (2012)).
An interesting robustness exercise is to see what happens to our estimates if
we employ simulated network matrices that break this pattern. We estimate
Equation (6) (baseline) several times by employing simulated downstream ma-
trices (“placebo”) and compare the results with the original estimates. We
carry out two experiments:

i. Column-Shuffling : we randomly shuffle the order of the columns of A and
create 100 simulated downstream matrices. This random permutation of
the columns allows us to break that natural equilibrium in which some
sectors behave as key suppliers and others are marginalized. In fact,
in this first simulation, some real-world key supplier might be forced to
behave as a peripheral sector and vice-versa. Therefore we expect less
statistically significant results.

ii. Row-Shuffling : we randomly shuffle the order of the rows of A. Unlike
the first experiment, reshuffling the elements within a column (shuffle
the order of the rows) does not break the aforementioned characterizing
pattern of the US downstream network. Sectors that originally were
key suppliers will still behave in the same way. The same is true for
peripheral sectors. We are reshuffling elements with similar magnitude
along a column of A. Therefore, we expect to record both stronger and
weaker results in terms of statistical significance.

Notice that in a Bayesian framework it is not fully correct to talk about statis-
tical significance, however, with a little abuse of terminology we state that the
ANETB is more statistically significant if the values of E(ATETB)/

√
V(ATETB)

and Pr(ATETB > 0) are both smaller. The first measure represents how many
standard deviations we need, to obtain the average ANETB: the smaller it is,
the more likely is to obtain sizable negative spillovers. The second measure is
simply the probability of obtaining a non-negative network effect: the smaller
it is, the higher the chances of getting recessionary spillovers.

31



Figure 10 plots on the horizontal axis the first measure and on the vertical
axis the second one. The red dot represents the values obtained by employing
the original matrix A (see Table III). The left panel of Figure 10 reports the

Figure 10: Placebo Experiment on ANETB
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results of the experiment of shuffling the order of the columns: the red-dot is
located in the South-West region of the graph, indicative of more significant
spillover effects, as expected. The right panel reports the results of the “row-
shuffling” experiment: the red-dot is located almost in the middle of the cloud
of simulations’ results, also in line with what expected.28

We highlight that these three steps procedure (simulation of network matrices,
re-estimation, and comparison with the original values) is analogous to Ozdagli
and Weber (2017). Unlike them, our “placebo” matrices are simulated in a
simpler way by simply reshuffling the orders of the columns and rows.
Our procedure has the benefit of preserving the original elements of the net-
work matrices, thus matching one to one both the distribution of the original
elements aij, as well as its sparsity (number of zero entries). Unlike the orig-
inal network A, the placebo matrices do not have large entries on the main
diagonal in either simulations (“dense main diagonal”).
Concerning the first order weighted in-degrees (A·1n) we have that the placebo
matrices will exactly match it in the first simulation (shuffling the columns)
while in the second one (shuffling the rows), the values are the same but they
are assigned to different industries.
The second-order weighted in-degrees (A2 · 1n) are not matched in either sim-
ulation, but the shape of their distribution is similar to the original one. Table

28Actually, slightly more dots are located more South-West than the original simulation;
this is not surprising if we think that we are moving the large elements of the main diagonal
(see heat-map 9) outside of it, thus mechanically inflating the indirect spillover of the sector
receiving the main diagonal entry.
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VI summarizes the results.

Table VI: Placebo Experiment Results

Network Features: Shuffling the Columns Shuffling the Rows

Sparsity same same
Distribution of aij same same
Dense Main Diagonal no no
1stWeighted In-degree same values same distribution
2ndWeighted In-degree similar distribution similar distribution
Key Suppliers same different
Peripheral Suppliers same different

Is original ANETB stronger? yes no

Ozdagli and Weber (2017) conclude that matching the first and second
order out-degree is not sufficient to justify the strong upstream propagation of
monetary policy shocks. In fact, they say, matching the properties of the net-
work industry by industry is necessary to obtain a strong network effect. We
achieve the same conclusion in the context of downstream propagation of TB
fiscal consolidations, measured by ANETB, by means of an easier experiment,
namely shuffling the order of rows and columns.
Finally, we answer the initial two questions: the significant downstream net-
work effect of TB fiscal consolidation that we find, is not capturing a spurious
relationship between the sectors, otherwise its effects should not be stronger
than the placebo ones when we shuffle the columns. In fact, the downstream
propagation hinges on the presence of key suppliers of input of production
in the industrial network, as witnessed by the lack of superior results when
employing the original downstream matrix and we break this pattern (row
shuffling).

5 Conclusions

This paper investigates the effects of fiscal consolidations and their propaga-
tion in the industrial network in the US from 1978-2014. We find that TB
fiscal consolidations are associated with slower consumption growth and are
implemented with excise/production tax increases which are supposed to prop-
agate downstream in the production network, via price increases. EB fiscal
consolidations have no recessionary effects and are implemented mainly with
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procurement spending cuts which propagate upstream in the production net-
work via changes in input-demand. Using a panel of 62 industries, we find
evidence of network effects of fiscal consolidations. In particular, we apply
spatial econometric techniques to break down the total aggregate effect of fis-
cal consolidations into a direct component and a network component.
Firstly, we find stronger effects of tax-based fiscal adjustments. In particular,
an adjustment of one percent of GDP leads to an average contraction over
two years of about -1.4% of value-added. Secondly, 27% of this effect can be
attributed to spillovers from a supplying industry to a customer one. Thirdly,
we find no evidence for a statistically significant recessionary impact of fis-
cal consolidations achieved by means of spending cuts. Rather, our evidence
indicates mild expansionary effects. Fourthly, only 11% of EB effects orig-
inate from an upstream network transmission. Fifthly, we find that almost
one-fourth of the different average total effects of TB and EB fiscal consolida-
tions can be explained by stronger network spillovers of the former. Moreover,
placebo experiments find that such a network effect of TB fiscal plans origi-
nates from the presence of key suppliers in the economy and does not depend
on the particular shape of the distribution of first and second-order in-degrees
of the network. When those key suppliers are forced to behave as peripheral
suppliers the downstream propagation of TB plans vanishes or becomes sig-
nificantly weaker.
In terms of policy implications, we provide further evidence that a fiscal con-
solidation based on spending cuts should be preferred to one based on tax
hikes. The rationale is that smaller negative spillovers associated with spend-
ing cuts reduce the overall output cost. Also, the placebo experiments stress
the importance of key suppliers of input in the industrial network. However,
we do not comment on the possibility of designing optimal policies which take
into account the special role of key suppliers in the propagation of shocks. We
plan to address these issues in further research.
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Appendices

A Details on Aggregate Level Analysis

Impulse response functions are computed following the algorithm. Step 1 -
solve dynamically forward the estimated equation putting all shocks to zero;
step 2 - simulate the equation setting the fiscal adjustment plan to 1% of GDP;
step 3 - compute impulse response as a difference between step 2 and step 1;
step 4 - compute confidence intervals using the block bootstrap to take into
account serial correlation.

In Section 2.2 we build impulse response functions using truncated moving
average model. In particular we estimate the following specification:

∆yt = α +B1(L) · fut · EBt +B2(L)fut · TBt + ...

...+ C1(L) · fat · EBt + C2(L) · fat · TBt + ...

...+
H∑
j=1

Dj · fat,t+j · EBt +
H∑
j=1

Ej · fat,t+j · TBt + εt

with:

fat,t+j = δTBj · fut · TBt + ε1t+j, for j = 1, H

fat,t+j = δEBj · fut · EBt + ε2t+j, for j = 1, H

where B(L) and C(L) are polynomials of the length six, H - is the antici-
pation horizon and also equal to six. We follow Mertens and Ravn (2012) on
this and six is the median implementation lag.

Figure 11 and 12 show the estimated impulse response functions of several
other tax receipts shares of GDP to TB and EB fiscal adjustment plans. Those
impulse responses are obtained using truncated moving average model.

B Industry Data

In this section we describe the data we use in our analysis.
Firstly, the disaggregation level, n = 62, is determined by starting from the

finest decomposition available on the Bureau of Economic Analysis (BEA) at a
yearly frequency, namely 71 sectors, and then aggregating those sectors whose
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Figure 11: Tax Receipts Response to TB Plans

data are not available for older years. We exclude the Government sector
and consider only Government Enterprises as the only public, but politically
independent, sector. The Government sector needs to be excluded since its
outcome variable is G, government spending, which mechanically falls when a
fiscal adjustment occurs.
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Figure 12: Tax Receipts Response to EB Plans

Value Added

We use real industry value-added as the dependent variable, ∆yit. Value-added
equals gross output minus intermediate inputs. It consists of compensation of
employees, taxes on production and imports less subsidies (formerly indirect
business taxes and non-tax payments), and gross operating surplus (formerly
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“other value added”). We prefer it over gross output to be consistent with
Acemoglu, Akcigit, and Kerr (2016).29

Industry Specific Shares:

Following Acemoglu, Akcigit, and Kerr (2016), we construct the vector of
industry-specific weights by exploiting information from the input-output ta-

bles, namely: ωEBi =
Salesi→G
Salesi

; where “G” stands for Government.30 By

doing so, we take into account the fact that the government purchases goods
and services in different quantities from each sector.31 Lastly, the vector of
weights for the EB plan, denoted by ωEB, is then normalized to one.
On the contrary, we assume that aggregate TB fiscal plans impact each sector
in the same fashion, therefore, we set ωTBi = 1/n for all i and the n× 1 vector
will be: ωTB = 1/n · 1n.

B.1 Input-Output Network

The BEA provides I-O tables that report the amount of commodity used (Use
Table) and made (Make Table) by each industry. Horowitz, Planting, et al.
(2006) outline the procedure to construct an industry-by-industry direct re-
quirement matrix, with elements given by SALESj→i/SALESi for each sector.
Let’s denote this matrix by A and note that its elements coincide one to one
with the weights of ∆ydown

i,t in Equation 6. Therefore, the downstream spatial
variable can be written in vector notation as: ∆ydown

t = A·∆ log yt and matrix
A can be constructed from the Make and Use Tables of the BEA.32 Henceforth
we will refer to matrix A as the “downstream matrix”.
Finally, we construct a new matrix starting from A and using BEA’s in-
dustry specific gross output, such that its (ij)th element is represented by
SALESi→j/SALESi, which coincides one to one with the weights of ∆yup

i,t in

Equation 6. We denote this new matrix by ÂT , and refer to it as the “up-
stream matrix”. The upstream spatial variable can now be written in vector

29Their decision is justified by the fact that value-added is adjusted for energy costs, non-
manufacturing input, and inventory changes which are all outside of the general equilibrium
model which provides the theoretical underpinning to their empirical strategy.

30Our definition of Government encompasses both Federal and State&Local government
spending. We therefore exclude here Government Enterprises, which instead are considered
as part of the industrial network.

31We thank Roberto Perotti for this point.
32We use the Make and Use tables of year 1997, which is the closest to the occurrence of

fiscal plans. Nevertheless, notice that I-O matrices are fairly stable over time.

42



notation as: ∆yup
t = ÂT ·∆ log yt.

The construction of matrices A and ÂT starts from the analysis of the Make
and Use tables illustrated in chapter 12 of Horowitz, Planting, et al. (2006). We
outline here the details of the construction and the precise mapping between
the theory and the data.

The Use Table

The Use table is a commodity-by-industry table which illustrates the uses
of commodities by intermediate and final users. The rows of the Use Table
represent the commodities (or products) and the sum of the entries in a row
is the total output of that commodity. On the contrary, the columns display
the industries that employ them and the final users. Horowitz, Planting, et al.
(2006) provides a useful numerical example with 3 industries:

Example of Use Table - 3 Industries

Commodity/Industry 1 2 3 Final demand Total Commodity Output

1 50 120 120 40 330
2 180 30 60 130 400
3 50 150 50 20 270

Scrap 1 3 1 0 5
VA 47 109 34 / 190

Total Industry Output 328 412 265 190 /

What is of our interest is clearly the n× n commodity-by-industry part of
the Table, whose values can be denoted with the following notation:

(Use)ij = INPi→j := Commodity i used as input by Industry j

Therefore, the n× n part of the Use Table we are going to use is:

U =


INP1→1 INP1→2 INP1→3

INP2→1 INP2→2 INP2→3

INP3→1 INP3→2 INP3→3

 =

 50 120 120
180 30 60
50 150 50
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In practice, the above matrix U is a “symmetric” commodity-by-industry Use
Table.

Next step boils down in constructing a commodity-by-industry direct re-
quirement table by dividing each industry’s input, INPj→i, by its corresponding
total industry output, yi. We denote such a matrix with letter B:

B =



INP1→1

y1

INP1→2

y2

INP1→3

y3

INP2→1

y1

INP2→2

y2

INP2→3

y3

INP3→1

y1

INP3→1

y2

INP3→3

y3


=



50

328

120

412

120

265

180

328

30

412

60

265

50

328

150

412

50

265


=


0.152 0.291 0.453

0.549 0.073 0.226

0.152 0.364 0.189

 .

Notice one important thing: matrix B is different from matrix A, since xi→j 6=
INPi→j: the former is an industry output flow, while the second measures a
commodity flow to an industry.

The Make Table

The Make table is an industry-by-commodity table which shows the production
of commodities by industries. Row i represents an industry and its summation
delivers the total industry output, yi. Column j represents a commodity and
its summation delivers the total commodity output.
Borrowing again Horowitz, Planting, et al., 2006’s 3 industries example, we
have:

Example of Make Table - 3 Industries

Industry/Commodity 1 2 3 Scrap Total Industry Output

1 300 25 0 3 328
2 30 360 20 2 412
3 0 15 250 0 265

Total Commodity Output 330 400 270 5 /

Similarly to what done for the Use Table, we are interested in the central
n × n elements of the table, which we can denote by V. The generic element
of the “heart” of the Make table is:

(Make)ij = OUTi→j := Commodity j produced by Industry i
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Therefore, the n× n part of the Make Table we are going to employ is:

V =


OUT1→1 OUT1→2 OUT1→3

OUT2→1 OUT2→2 OUT2→3

OUT3→1 OUT3→2 OUT3→3

 =

300 25 0
30 360 20
0 15 250



In practice, the above matrix V is a “symmetric” industry-by-commodity Make
Table.

Analogously to what done before, we now take ratios; in particular, we
divide each element of V by the total production of commodity j. The resulting
matrix is denoted by D, and its generic element is:

(D)ij =
OUTi→j∑n
k=1 OUTk→j

=
OUTi→j
Cj

where Cj :=
∑n

k=1OUTk→j is the total production of commodity j. D rep-
resents the share of industry i in the total production of commodity j; not
surprisingly, Horowitz, Planting, et al. (2006) refer to this matrix as the “mar-
ket share matrix”. In the 3 industries/commodities example we have:

D =



OUT1→1

C1

OUT1→2

C2

OUT1→3

C3

OUT2→1

C1

OUT2→2

C2

OUT1→3

C3

OUT3→1

C1

OUT3→2

C2

OUT3→3

C3


=



300

330

25

400

0

270

30

330

360

400

20

270

0

330

15

400

250

270


=

0.909 0.063 0
0.091 0.900 0.074

0 0.038 0.926



Adjustment for Scrap Products

The I-O accounts include a commodity for scrap, which is a byproduct of in-
dustry production. No industry produces scrap on demand; rather, it is the
result of production to meet other demands. In order to make the I-O model
work correctly, we have to eliminate scrap as a secondary product. At the
same time, we must also keep industry output at the same level.

This adjustment is accomplished by calculating the ratio of non-scrap out-
put to industry output for each industry and then applying these ratios to
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the market shares matrix in order to account for total industry output. More
precisely, the non-scrap ratio, which I denote by θi, is defined as follows:

θi =
yi − (scrap)i

yi

and represents the share of total industry output imade of commodity different
from “scrap”. In the 3 industries example we have:

Industry Tot.Ind.Out. Scrap ∆ θi

1 328 3 325 0.991
2 412 2 410 0.995
3 265 0 265 1

The market shares matrix, D, is adjusted for scrap by dividing each row by
the non-scrap ratio for that industry. In the resulting transformation matrix,
called W, the implicit commodity output of each industry has been increased.
In other words, we are increasing each market share to take into account that
to produce each unit of each commodity, industry i will produce 1/θi units
of output. In essence, we are spreading the production of commodity “scrap”
over the production of all the other commodities:

W =



OUT1→1

C1

· 1

θ1

OUT1→2

C2

· 1

θ2

OUT1→3

C3

· 1

θ3

OUT2→1

C1

· 1

θ1

OUT2→2

C2

· 1

θ2

OUT1→3

C3

· 1

θ3

OUT3→1

C1

· 1

θ1

OUT3→2

C2

· 1

θ2

OUT3→3

C3

· 1

θ3


=



0.909

0.991

0.063

0.991

0

0.991

0.091

0.995

0.900

0.995

0.074

0.995

0

1

0.038

1

0.926

1


=

0.917 0.063 0
0.091 0.904 0.074

0 0.038 0.926



The Direct Requirement Table

To summarize:

1. We constructed matrix B, a commodity-by-industry direct requirement
table, whose columns tell us how much an industry j needs of commodity
i relative to its own total industry production.

2. We constructed matrix W, an industry-by-commodity matrix which rep-
resent the market share - adjusted for scrap - of each industry i in the
production of a commodity j.
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By combining these two matrices we can obtain an industry-by-industry direct
requirement matrix:

P︸︷︷︸
industry×industry

:= W︸︷︷︸
industry×commodity

· B︸︷︷︸
commodity×industry

In order to understand the meaning of each element of matrix P, it is important
to derive it analytically:

P =



OUT1→1

C1 · θ1

OUT1→2

C2 · θ2

OUT1→3

C3 · θ3

OUT2→1

C1 · θ1

OUT2→2

C2 · θ2

OUT1→3

C3 · θ3

OUT3→1

C1 · θ1

OUT3→2

C2 · θ2

OUT3→3

C3 · θ3


︸ ︷︷ ︸

W

·



INP1→1

y1

INP1→2

y2

INP1→3

y3

INP2→1

y1

INP2→2

y2

INP2→3

y3

INP3→1

y1

INP3→2

y2

INP3→3

y3


︸ ︷︷ ︸

B

Denoting by pij the generic element of P, we have:

pij =

OUTi→1

C1 · θ1

· INP1→j +
OUTi→2

C2 · θ2

· INP2→j +
OUTi→3

C3 · θ3

· INP3→j

yj
≈ SALESi→j

SALESj

In other words, pij represents how much industry j depends on inputs form
industry i relative to its own total industry output yj.

33

Notice that the transposed of matrix P is approximately equal to matrix A in
the paper:

P ≈



SALES1→1

SALES1

SALES1→2

SALES2

SALES1→3

SALES3

SALES2→1

SALES1

SALES2→2

SALES2

SALES2→3

SALES3

SALES3→1

SALES1

SALES3→2

SALES2

SALES3→3

SALES3


=⇒ A ≈ P T

33Notice that a big assumption is made in the construction of this matrix: if industry i
has adjusted market share of production of commodity K, OUTi→K/(CK ·θK) equal to, say
10%, then it is assumed that if industry j purchases z := INPK→j dollars of commodity K,
then 10% of z$ come from industry i. This must be true on average but it might not be
exactly true case by case.
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Matrix P can be either constructed from the Make and Use table or down-
loaded from the BEA, as an industry-by-industry direct requirement table. Its
transposed value identifies the matrix A in Equation (6).
The construction of matrix ÂT , in equation (7), is trivial once we have matrix
A as well as a vector of average industry output.

C Spatial Econometric Estimation

We believe that our empirical methodology presents some results of indepen-
dent interest. Although we do not want to divert attention from the macroe-
conomic focus of the paper, we believe certain econometric facts are worth
mentioning here in the Appendix. We provide this discussion in the spirit of
promoting the usage of these new techniques in macroeconomic analysis.

Firstly, the adoption of spatial econometric methods allows us to disen-
tangle the direct and network effect of aggregate shocks. This is a novel and
recent innovation in macroeconomics, as noted in Ozdagli and Weber (2017).
Secondly, spatial models are traditionally estimated by row-normalizing and
removing the main diagonal from the weighting matrix. Another common as-
sumption is homoskedasticity of the error term. In a recent paper, Aquaro,
Bailey, and Pesaran (2019) develop a new estimator which relaxes homoskedas-
ticity and allow for different spatial coefficients, thus indirectly relaxing the
row-normalization assumption. They refer to it as Heterogenous Spatial Au-
toregressive model (HSAR). They also point out that not assuming zero entries
on the main diagonal of the weighting matrix is simply a re-parameterization
of the model, which does not harm the statistical properties of the MLE, but
does change the interpretation of the parameters.34 Their econometric model,
adopted by Ozdagli and Weber (2017), is very convenient for macroeconomic
applications which use non-row-normalized, dense main diagonal weighting
matrices and in a setting where units are subject to heteroskedastic idiosyn-
cratic shocks.

However, we highlight that even the standard dynamic spatial panel au-
toregressive model of Yu, DeJong, and Lee (2008) can easily be relaxed to ac-
commodate for non-zero entries on the main diagonal and non-row-normalized
weighting matrix with heteroskedastic errors.35 Our construction of a Bayesian
MCMC, similar to the one in LeSage and Pace (2009), is thus an easy and nat-
ural extension to the more general version of the spatial panel autoregressive

34We are grateful to Hashem Pesaran for making us aware of this.
35We thank Lung-Fei Lee for pointing this out.
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model of Yu, DeJong, and Lee (2008). Moreover, the Bayesian MCMC method
provides an easy way to recover the posterior distributions of the aggregate
effects of the shocks, as illustrated earlier.
We encourage macroeconomists to adopt spatial econometric tools to study
the propagation of aggregate shocks into a network of sub-units (countries,
industries, regions...) but in doing so we also recommend them to follow three
good practices:

1. Firstly, always allow for heteroskedasticity, since sub-units in general
have different volatilities.

2. Secondly, never remove the main diagonal from the empirically observed
weighting matrices, in our case A and ÂT . In fact, zero-entries in the
main diagonal imposes a lack of spillovers within the same observed unit
(“intra-unit feedback”). This is a reasonable assumption when units are
individuals - like in standard spatial econometric applications - but it is
not sensible when units are aggregates, such as industries. Notice, that
the empirically observed A and ÂT weighting matrices from our analysis
exhibit very dense main diagonals (see Figure 9).

3. Thirdly, never row-normalize the weighting matrices. Row-normalization
flattens the differences in the degree of connection of each unit. For in-
stance, in our application with the industrial network, A and ÂT exhibit
very different row-sums, indicative of different degrees of exposure to
customer and supplying industries.

We recommend using either the Bayesian MCMC methodology developed here
and detailed in Appendix C.3 or the HSAR model of Aquaro, Bailey, and Pe-
saran (2019), whenever the application requires heterogeneous spatial coeffi-
cients. The relationship between the two models is left for future research.

In what follows we outline the details of the spatial econometric estimator
that we employ.

C.1 Log-likelihood

The standard way to estimate the parameters of Equations (6) and (7) is via
maximum likelihood (see LeSage and Pace (2009) for an introduction to spatial
econometrics). The asymptotic and small sample properties of the MLE have
been studied in Lee (2004) for cross-sectional data, and in Yu, DeJong, and
Lee (2008), for dynamic panel data models with fixed effects.
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We provide here the derivation of the log-likelihood of the baseline model
(6), necessary for the calculation of both the MLE and the conditional posterior
distributions of the Bayesian MCMC.36 Collecting fiscal adjustment plans,
industry fixed effects and other controls into matrix Xt, from Equation (6):

H−1
t ·∆yt

n×1
= Xt

n×k
· β + εt

Ht =
(
In − ρdown · A · TBt − ρup · ÂT · EBt

)−1

εt ∼ N (0,Ω),∀t ∈ {1, ..., T}
Ω = diag(σ2

1, ..., σ
2
n)

εt ⊥ εt+i, ∀t ∈ {1, ..., T},∀i ∈ Z

where k is the number of regressors.37 We now make a convenient change in
the notation: 1. we now use ′ as a symbol for transposition instead of T ; 2. we
now set ρ1 = ρdown, ρ2 = ρup, A = W1 and Â′ = W2. We have:

Zt := H−1
t ·∆yt ∼ N (Xtβ,Ω) =⇒ ∆yt ∼ N (HtXtβ,HtΩH

′
t)

The density function of the random vector ∆yt is:

f(∆yt
n×1
|Xt, ρ, β,Ω) =

1√
(2π)n · |HtΩH ′t|

exp

{
−1

2
·(∆yt−HtXtβ)′·(HtΩH

′
t)
−1·(∆yt−HtXtβ)

}
,

with ρ =
[
ρdown, ρup

]
.

Given that (HtΩH
′
t)
−1 = (H ′t)

−1 ·Ω−1 ·H−1
t and |HtΩH

′
t| = |Ht|2 · |Ω|, we have:

f(∆yt|·) = (2π)−n/2 · |Ht|−1 · |Ω|−1/2 · exp

{
− 1

2
(Zt −Xtβ)′ ·H ′t · (H ′t)−1 · Ω−1 ·H−1

t ·Ht · (Zt −Xtβ)

}
= (2π)−n/2 · |(In − ρ1W1TBt − ρ2W2EBt)

−1|−1 · |Ω|−1/2 exp

{
− 1

2
ε′tΩ

−1εt

}
= (2π)−n/2 · |In − ρ1 ·W1 · TBt − ρ2 ·W2 · EBt| · |Ω|−1/2 exp

{
− 1

2
ε′tΩ

−1εt

}
,

At this point we need to find the likelihood of the random vector ∆y =[
∆y′1 . . . ∆y′T

]
. Since the model is static and we have assumed cov(εt, εt−k) =

36Results for the inverted model, Equation (7)) are symmetric to the baseline case.
37k in our baseline is n fixed effects plust 6 fiscal adjustment components (unexpected,

announced and future for both TB and EB plans) plus 2 year dummies for 2008 and 2009.
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ρ0

n×n
, then ∆yt is iid over time. By consequence, the following holds:

f( ∆y
nT×1
|X1, . . . , XT , ρ, β,Ω) =

T∏
t=1

f(∆yt
n×1
|Xt, ρ, β,Ω) =

(
(2π)n|Ω|

)−T/2·
·
T∏
t=1

|In − ρ1 ·W1 · TBt − ρ2 ·W2 · EBt| exp
{
− 1

2
·

T∑
t=1

ε′tΩ
−1εt

}
.

Now we divide the time series of length T in three different sub-periods. In
doing so, consider the following new parameters:

• t1: set of years when a tax based fiscal adjustment occurs.
Formally t1 := {1, ..., t, ..., T1| t such that TBt = 1}. We set: Ht| t ∈
t1 = (In − ρ1 ·W1)−1 = Hτ .

• t2: set of years when an expenditure tax based fiscal adjustment occurs.
Formally: t2 := {1, ..., t, ..., T2| t such that EBt = 1}. We set Ht| t ∈
t2 = (In − ρ2 ·W2)−1 = Hγ.

• t3: set of years when neither a tax based fiscal adjustment nor an expen-
diture based fiscal adjustment occurs.
Formally t3 := {1, ..., t, ..., T3| t such that TBt = 0 ∧ EBt = 0}. We set
Ht| t ∈ t3 = (In)−1 = In.

Therefore, we have that t1, t2 and t3 account for a partition of the whole time
series and T = T1 + T2 + T3. By consequence we have:

T∏
t=1

|In − ρ1W1TBt − ρ2W2EBt| =
T∏
t=1

|H−1
t |

=
T∏
t=1

1

|Ht|

=

T1∏
t∈t1

1

|Ht|
·
T2∏
t∈t2

1

|Ht|
·
T3∏
t∈t3

1

|Ht|

= |Hτ |−T1 · |Hγ|−T2 · |In|−T3

= |In − ρ1 ·W1|T1 · |In − ρ2W2|T2

At this point, we rewrite the probability density function of our dependent
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variable as:

f(∆yt|X1, . . . , XT , ρ, β,Ω) = (2π)−nT/2 · |Ω|−T/2·

· |In − ρ1 ·W1|T1 · |In − ρ2W2|T2 · exp

{
− 1

2
·

T∑
t=1

ε′t · Ω−1 · εt
}
.

Finally, the log-likelihood of our dataset is:

log L (ρ, β,Ω|∆y1, . . . ,∆yT , X1, . . . , XT ) = −nT
2

ln(2π)− T

2
· ln(|Ω|)+

+ T1 · ln(|In − ρ1 ·W1|) + T2 · ln(|In − ρ2W2|)−
1

2
·

T∑
t=1

ε′t · Ω−1 · εt.

with:

εt = Zt−Xt ·β = H−1
t ·∆yt−Xtβ = (In−ρ1W1TBt−ρ2W2EBt) ·∆yt−Xt ·β.

Furthermore, we impose the condition λ−1
min < ρ̂1 < λ−1

max and µ−1
min < ρ̂2 <

µ−1
max, where λ and µ are the eigenvalues of the spatial matrices W1 and W2

respectively. This condition guarantees that the estimated model will have
positive definite covariance matrix (see Ord (1975)).
Notice that in the inverted model of Equation (7), it is enough to switch the
definition of W1 and W2 by setting: A = W2 and Â′ = W1.

C.2 The Analytical Fisher Information Matrix

In order to derive the Fisher Information Matrix we firstly need to obtain
the total gradient of the log-likelihood function. Let’s start with the spatial
coefficient ρ1:

∂ log L (θ|∆y,X)

∂ρ1

= T1
1

|In − ρ1W1|
∂|In − ρ1W1|

∂ρ1

−1

2

T∑
t=1

∂(Z ′tΩ
−1Zt)

∂ρ1

−2
∂(Z ′tΩ

−1Xtβ)

∂ρ1

.

By some matrix algebra, it is possible to show that:

∂(Z ′tΩ
−1Zt)

∂ρ1

= −TBt ·∆y′t · Ω−1 ·W1 ·∆yt − TBt ·∆y′t ·W ′
1Ω−1 ·∆yt

+ 2ρ1 · TB2
t ·∆y′t ·W1 · Ω−1 ·W1 ·∆y′t + 2ρ2 · TBt · EBt ·∆y′t ·W1 · Ω−1 ·W2 ·∆y′t
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Since our fiscal adjustment plans are mutually exclusive, we have that TBt ·
EBt = 0 for all t. Moreover, by rearranging the above expression, we get:

∂(Z ′tΩ
−1Zt)

∂ρ1

= −2 · TBt ·∆y′t · (In − ρ1 ·W ′
1) · Ω−1 ·W1 ·∆yt

After other matrix algebra, we get:

−2 · ∂(Zt · Ω−1Xtβ)

∂ρ1

= 2 · TBt ·∆y′t ·W ′
1 · Ω−1 ·Xt · β

Wrapping up all together, and employing the notation introduced earlier: (In−
ρ1W1)−1 = Hτ , we have:

∂ log L (θ|∆y,X)

∂ρ1

= T1
1

|In − ρ1W1|
∂|In − ρ1W1|

∂ρ1

+

+

T1∑
t∈t1

[
∆y′t · (In − ρ1 ·W ′

1) · Ω−1 ·W1 ·∆yt −∆y′t ·W ′
1 · Ω−1 ·Xt · β

]
=

= T1
1

|In − ρ1W1|
· |In − ρ1W1| · Tr

(
(In − ρ1W1)−1 · (−W1)

)
+

+

T1∑
t∈t1

[(
(In − ρ1 ·W1) ·∆yt

)′ · Ω−1 ·W1 ·∆yt − β′ ·X ′t · Ω−1 ·W1 ·∆yt
]

= −T1 · Tr
(
Hτ ·W1

)
+

T1∑
t∈t1

[(
Zt −Xtβ

)′ · Ω−1 ·W1 ·∆yt
]

=

T1∑
t∈t1

(
ε′t · Ω−1 ·W1 ·∆yt

)
− T1 · Tr

(
Hτ ·W1

)
.

By simmetry we have that:

∂ log L (θ|∆y,X)

∂ρ2

=

T2∑
t∈t2

(
ε′t · Ω−1 ·W2 ·∆yt

)
− T2 · Tr

(
Hγ ·W2

)
,

with Hγ = (In − ρ2W2)−1, from the previous notation.
As far as concern the derivative with respect to β, we have already seen when
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concentrating the log-likelihood that:

∂ log L (θ|∆y,X)

∂β
= X ′ · Σ−1 · Z −X ′ · Σ−1 ·X · β

= X ′ · Σ−1 · (Z −X · β) =

= X ′ · Σ−1 · ε =

=
T∑
t=1

X ′t · Ω−1 · εt.

Concerning the derivatives with respect to σ2
i , we need firstly to acknowledge

that:
T∑
t=1

ε′t · Ω−1 · εt =
T∑
t=1

n∑
i=1

ε2
i,t

σ2
i

=
n∑
i=1

1

σ2
i

T∑
t=1

ε2
i,t,

and that:

ln(|Ω|) = ln(
n∏
i=1

σ2
i ) =

n∑
i=1

ln(σ2
i ).

Therefore, we have that:

∂ log L (θ|∆y,X)

∂σ2
i

= −T
2

∂ ln(|Ω|)
∂σ2

i

− 1

2
· ∂

∂σ2
i

T∑
t=1

ε′t · Ω−1 · εt

= − T

2 · σ2
i

+
1

2 · σ4
i

·
T∑
t=1

ε2
i,t.
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We now have all the elements to write down the gradient of the log-likelihood:

∇ log L (θ|∆y,X) =



∂ log L (θ|∆y,X)

∂ρ1

∂ log L (θ|∆y,X)

∂ρ2

∂ log L (θ|∆y,X)

∂β

∂ log L (θ|∆y,X)

∂σ2
1

...

∂ log L (θ|∆y,X)

∂σ2
n


38×1

=



∑T1
t∈t1

(
ε′t · Ω−1 ·W1 ·∆yt

)
− T1 · Tr

(
Hτ ·W1

)
∑T2

t∈t2

(
ε′t · Ω−1 ·W2 ·∆yt

)
− T2 · Tr

(
Hγ ·W2

)
∑T

t=1X
′
t · Ω−1 · εt

− T

2 · σ2
1

+
1

2 · σ4
1

·
∑T

t=1 ε
2
1,t

...

− T

2 · σ2
n

+
1

2 · σ4
n

·
∑T

t=1 ε
2
n,t


Another round of derivation is now needed. Let’s start with the first row of

the matrix: all the derivatives of
∂ log L (θ|∆y,X)

∂ρ1

with respect to all the

parameters. To simplify notation we will refer with Hij to the element of row
i and column j of the Hessian matrix.

H1,1 =
∂2 log L (θ|∆y,X)

∂ρ2
1

=

T1∑
t∈t1

( ∂ε′t
∂ρ1

· Ω−1 ·W1 ·∆yt
)
− T1 ·

∂Tr
(
Hτ ·W1

)
∂ρ1

=

T1∑
t∈t1

(
(−∆y′t ·W ′

1) · Ω−1 ·W1 ·∆yt
)
− T1 · Tr

(∂Hτ

∂ρ1

·W1

)
=

= −
T1∑
t∈t1

(
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
)
− T1 · Tr

(
(−Hτ · (−W1) ·Hτ ) ·W1

)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

(
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
)
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Symmetrically we have:

H2,2 =
∂2 log L (θ|∆y,X)

∂ρ2
2

=

= −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ

)
−

T2∑
t∈t2

(
∆y′t ·W ′

2 · Ω−1 ·W2 ·∆yt
)

Going back to the first row, we now calculate the cross derivative with respect
to ρ2. Before doing so, recall that, being the log-likelihood a continuously
diffirentiable function, the Schwarz’s theorem applies and the Hessian matrix
is symmetric.

H1,2 = H2,1 =
∂2 log L (θ|∆y,X)

∂ρ1∂ρ2

= 0.

Going on with the calculation we have:

H1,3:1,23 =
∂2 log L (θ|∆y,X)

∂ρ1∂β
=

T1∑
t∈t1

(∂ε′t
∂β
· Ω−1 ·W1 ·∆yt

)
= −

T1∑
t∈t1

X ′t · Ω−1 ·W1 ·∆yt

= −X ′τ · (IT1 ⊗ Ω−1)
Σ−1
τ

· (IT1 ⊗W1) ·∆yτ

where H1,3:1,23 means all the elements of the first row, from column 3 up to
column 23. Xτ and ∆yτ represent X and ∆y but for the only years when a
tax based fiscal adjustment occur:

Xτ =


X1
...
Xt
...

XT1


T1n×k

and ∆yτ =


∆y1

...
∆yt

...
∆yT1


T1n×k

with t ∈ t1,
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Symmetrically:

H2,3:2,23 =
∂2 log L (θ|∆y,X)

∂ρ2∂β
=

T2∑
t∈t2

(∂ε′t
∂β
· Ω−1 ·W2 ·∆yt

)
= −

T2∑
t∈t2

X ′t · Ω−1 ·W2 ·∆yt

= −X ′γ · (IT2 ⊗ Ω−1)
Σ−1
γ

· (IT2 ⊗W2) ·∆yγ,

with:

Xγ =


X1
...
Xt
...

XT2


T2n×k

and ∆yγ =


∆y1

...
∆yt

...
∆yT2


T2n×k

with t ∈ t2,

H3,3:23,23 =
∂2 log L (θ|∆y,X)

∂β2
=

∂

∂β2

( T∑
t=1

X ′t · Ω−1 · εt
)

=
T∑
t=1

X ′t · Ω−1 · ∂(Zt −Xt · β)

∂β2

=
T∑
t=1

X ′t · Ω−1 ·Xt

= −X ′ · Σ−1 ·X.

H3,24:23,38 =
∂2 log L (θ|∆y,X)

∂β∂σ2
=

T∑
t=1

X ′t ·
∂Ω−1

∂σ2
· εt

The generic element of the above matrix is a k × 1 vector:

−σ−4
1 ·

T∑
t=1

X ′1,t · εi,t.

Going on with the calculation:
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Hi,i|i∈[24,38] =
∂2 log L (θ|∆y,X)

∂(σ2
i )

2
=
T

2
· 1

σ4
i

·
(

1− 2

T · σ2
i

·
T∑
t=1

ε2
i,t

)
.

H23+i,23+j|i,j∈[1,n] =
∂2 log L (θ|∆y,X)

∂σ2
i ∂σ

2
j

= 0 ∀i 6= j.

H1,24:1,38 =
∂2 log L (θ|∆y,X)

∂ρ1∂σ2
i

=
∂

∂σ2
i

( T1∑
t∈t1

ε′t · Ω−1 ·W1 ·∆yt
)

=
∂

∂σ2
i

( T1∑
t∈t1

Tr
(
ε′t · Ω−1 ·W1 ·∆yt

))
=

∂

∂σ2
i

(
Tr
(( T1∑

t∈t1

∆yt · ε′t
)
· Ω−1 ·W1

))
= Tr

(( T1∑
t∈t1

∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W1

)

Note that

∂Ω−1

∂σ2
i

=


0 · · · 0 · · · 0
...

. . .
...

...
0 · · · −σ−4

i · · · 0
...

...
. . .

...
0 · · · 0 · · · 0

 = diag(0, · · · , 0,−σ−4
i , 0, · · · , 0)

Symmetrically:

H2,24:2,38 =
∂2 log L (θ|∆y,X)

∂ρ2∂σ2
i

= Tr
(( T2∑

t∈t2

∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W2

)

At this point we have all the elements to construct the Hessian matrix of the
log-likelihood.
To sum up, first row:

• H1,1 = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−
∑T1

t∈t1

(
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
)

• H1,2 = 0
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• H1,3:1,23 = −
∑T1

t∈t1 X
′
t · Ω−1 ·W1 ·∆yt

• H1,24:1,38 = Tr
((∑T1

t∈t1 ∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W1

)
.

Second row:

• H2,1 = 0

• H2,2 = −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ

)
−
∑T2

t∈t2

(
∆y′t ·W ′

2 · Ω−1 ·W2 ·∆yt
)

• H2,3:2,23 = −
∑T2

t∈t2 X
′
t · Ω−1 ·W2 ·∆yt

• H2,24:2,38 = Tr
((∑T2

t∈t2 ∆yt · ε′t
)
· ∂Ω−1

∂σ2
i

·W2

)
.

From row 3 to row 23:

• H3,1:23,1 = H ′
1,3:1,23

• H3,2:23,2 = H ′
2,3:2,23

• H3,3:23,23 =
∑T

t=1X
′
t · Ω−1 ·Xt

• H3,24:23,38 =
∑T

t=1X
′
t ·
∂Ω−1

∂σ2
· εt

From row 24 to the last row (number 38):

• H24,1:38,1 = H ′
1,24:1,38

• H24,2:38,2 = H ′
2,24:2,38

• H24,3:38,23 = H ′
3,24:23,38
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• H23+i,23+j|i,j∈[1,n] =


T

2
· 1

σ4
i

·
(

1− 2

T · σ2
i

·
T∑
t=1

ε2
i,t

)
∀i = j ∈ [1, n]

0 ∀i 6= j

The last step we have to make to finally obtain the Fisher Information Matrix
is taking expectations of every element.

E[H1,1] = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

E
[
∆y′t ·W ′

1 · Ω−1 ·W1 ·∆yt
]

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

E
[
Tr
(
W1 ·∆yt ·∆y′t ·W ′

1 · Ω−1
)]

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

Tr
(
W1 · E

[
∆yt ·∆y′t

]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

Tr
(
W1 · E

[
Hτ ·Xt · β · ε′t ·H ′τ+

+Hτ ·Xt · β · β′ ·X ′t ·H ′τ +Hτ · εt · ε′t ·H ′τ · εt · β′ ·X ′t ·H ′τ
]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

T1∑
t∈t1

Tr
(
W1 ·

[
Hτ ·Xt · β · E[ε′t] ·H ′τ+

+Hτ ·Xt · β · β′ ·X ′t ·H ′τ +Hτ · E[εt · ε′t] ·H ′τ + E[εt] · β′ ·X ′t ·H ′τ
]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

−
T1∑
t∈t1

Tr
(
W1 ·

[
Hτ ·Xt · β · β′ ·X ′t ·H ′τ +Hτ · Ω ·H ′τ

]
·W ′

1 · Ω−1
)

=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ

)
−

−
T1∑
t∈t1

Tr
(
W1 ·Hτ ·Xt · β · β′ ·X ′t ·H ′τ ·W ′

1 · Ω−1 +W1 ·Hτ · Ω ·H ′τ ·W ′
1 · Ω−1

)
=

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +H ′τ ·W ′

1 · Ω−1 ·W1 ·Hτ · Ω
)
−

−
T1∑
t∈t1

Tr
(
β′ ·X ′t ·H ′τ ·W ′

1 · Ω−1 ·W1 ·Hτ ·Xt · β
)

=
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Setting M τ
1 = H ′τ ·W ′

1 · Ω−1 ·W1 ·Hτ we can rewrite the above identity as:

E[H1,1] = −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +M τ

1 · Ω
)
−

T1∑
t∈t1

β′ ·X ′t ·M τ
1 ·Xt · β =

= −T1 · Tr
(
W1 ·Hτ ·W1 ·Hτ +M τ

1 · Ω
)
− β′ ·X ′τ ·

(
IT1 ⊗M τ

1

)
·Xτ · β.

Simmetrically:

E[H2,2] = −T2 · Tr
(
W2 ·Hγ ·W2 ·Hγ +Mγ

1 · Ω
)
− β′ ·X ′γ ·

(
IT2 ⊗M

γ
1

)
·Xγ · β.

with Mγ
1 = H ′γ ·W ′

2 · Ω−1 ·W2 ·Hγ.

Going on with the calculation:

E[H1,3:1,23] = E
[
−

T1∑
t∈t1

X ′t · Ω−1 ·W1 ·∆yt
]

=

= −
T1∑
t∈t1

X ′t · Ω−1 ·W1 · E
[
Hτ ·Xt · β +Hτ · εt

]
=

= −
T1∑
t∈t1

X ′t · Ω−1 ·W1 ·Hτ ·Xt · β

= X ′τ · (IT1 ⊗M τ
2 ) ·Xτ · β

with M τ
2 = Ω−1 ·W1 ·Hτ .

Simmetrically:

E[H2,3:2,23] = X ′γ · (IT2 ⊗M
γ
2 ) ·Xγ · β

with Mγ
2 = Ω−1 ·W2 ·Hγ.
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Next step:

E[H1,24:1,38] = Tr
(( T1∑

t∈t1

E
[
∆yt · ε′t

])
· ∂Ω−1

∂σ2
i

·W1

)
=

= Tr
(( T1∑

t∈t1

E
[
∆yt · ε′t

])
· ∂Ω−1

∂σ2
i

·W1

)
=

= Tr
(( T1∑

t∈t1

Hτ · E
[
εt · ε′t

])
· ∂Ω−1

∂σ2
i

·W1

)
=

= T1 · Tr
(
Hτ · Ω ·

∂Ω−1

∂σ2
i

·W1

)
=

= T1 · Tr
(

Ω · ∂Ω−1

∂σ2
i

·W1 ·Hτ

)
,

Notice that

Ω · ∂Ω−1

∂σ−2
i

= −σ2
i · Iii

where the generic element of matrix Iii is given by

ωs,t =

{
1 s = i, j = i

0 otherwise

Therefore

E[H1,23+i] = T1 · σ−2
i · Tr

(
Iii ·W1 ·Hτ

)
=

= T1 · σ−2
i ·

(
W1 ·Hτ

)
ii

Finally we have that:

E[H1,24:1:38] = T1 · diag
(

Ω−1 ·W1 ·Hτ

)
= T1 · diag(M τ

2 ).

Simmetrically:

E[H2,24:2:38] = T2 · diag
(

Ω−1 ·W2 ·Hγ

)
= T2 · diag(Mγ

2 ).
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Going on:

E[H3,3:23,23] = E[
T∑
t=1

X ′t · Ω−1 ·Xt] =
T∑
t=1

X ′t · Ω−1 ·Xt = X ′ · Σ−1 ·X

E[H3,24:23,38] = E[
T∑
t=1

X ′t ·
∂Ω−1

∂σ2
· εt]

=
T∑
t=1

X ′t ·
∂Ω−1

∂σ2
· E[εt]

= 0
k×n

E[H23+i,23+j|i,j∈[1,n]] =


T

2
· 1

σ4
i

·
(

1− 2

T · σ2
i

·
T∑
t=1

E[ε2
i,t]

)
∀i = j ∈ [1, n]

0 ∀i 6= j

=

−
T

2
· 1

σ4
i

∀i = j ∈ [1, n]

0 ∀i 6= j

= −T
2
·


σ−4

1 0 · · · 0
0 σ−4

2 · · · 0
...

...
. . .

...
o 0 · · · σ−4

n

 = −T
2
· V

We finally have all the elements of the Fisher Information Matrix for our panel
(with dummy variables) spatial model:

I =
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                −
T

1
·T
r( W 1

·H
τ
·W

1
·H

τ
+
M

τ 1
·Ω
) −

−
β
′
·X
′ τ
·( I T 1

⊗
M

τ 1

) ·X
τ
·β

0
( X′ τ
·(
I T

1
⊗
M

τ 2
)
·X

τ
·β
) ′

T
1
·d
ia
g
(M

τ 2
)′

0
−
T

2
·T
r( W 2

·H
γ
·W

2
·H

γ
+
M

γ 1
·Ω
) −

−
β
′
·X
′ γ
·( I T 2

⊗
M

γ 1

) ·X
γ
·β

( X′ γ
·(
I T

2
⊗
M

γ 2
)
·X

γ
·β
) ′

T
2
·d
ia
g
(M

γ 2
)′

X
′ τ
·(
I T

1
⊗
M

τ 2
)
·X

τ
·β

X
′ γ
·(
I T

2
⊗
M

γ 2
)
·X

γ
·β

X
′
·Σ
−

1
·X

0
k
×
n

T
1
·d
ia
g
(M

τ 2
)

T
2
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C.3 Bayesian MCMC - Technical Details

Even if the MLE is a common standard method in spatial econometric ap-
plications, we have two valid reasons for not adopting it: 1. non-stationary
estimates of aggregate total effects; 2. prior information on the values of the
parameters. Let’s explore both the issues.

1. Non-Stationary Solutions

We can estimate the parameters by maximizing the concentrated log-likelihood
over the compact set which guarantees a positive definite matrix (see Ord
(1975)): Cdown =

(
λ−1

min, λ
−1
max

)
and Cup =

(
µ−1

min, µ
−1
max

)
. The standard errors

are constructed using the analytical Fisher Information of the model, centered
on the point estimates, ρ̂down and ρ̂up. The asymptotic results of Yu, De-
Jong, and Lee (2008) guarantees the asymptotic normality of the parameters
of equation (6) and (7) (See Theorem 3 case n/T → 0). For instance, for the
estimator of ρdown we have:

√
T · n

(
ρ̂downnT − ρdown

) d−→ N
(
0, σ2

)
where σ2 is the asymptotic variance of the MLE, obtained by the calculating
the analytical Fisher Information matrix of our model. However, we are inter-
ested in estimating the aggregate total effect of fiscal consolidations, not the
parameters of the model themselves. At page 70, LeSage and Pace (2009) sug-
gest to construct the asymptotic distribution of the average total effect (our
aggregate total effect) by following these steps: 1. estimate the parameters of
the model via MLE; 2. Draw values of the parameters by their approximate

asymptotic distribution (ρ̃down ≈ N
(
ρ̂downnT ,

σ̂2(ρ̂downnT )

nT

)
; 3. Calculate at each

step the aggregate total effect. After doing so we calculated the standard errors
of the ATETB by calculating the standard deviation of the asymptotic distri-
bution so constructed. We obtained explosive solutions. This is a surprising
result, in fact, the asymptotic normality of the average effect is guaranteed by
the ∆-method:

√
T · n

(
ATETB(ρ̂downnT )− ATETB(ρdown)

) d−→ N

(
0, σ2 ·

(
∂ATETB(ρdown)

∂ρdown

)2
)

where ATETB : Cdown → R and ATETB(x) = v′ · (In − x · A)−1 · ωTB and
v is a vector of industry output shares of total industrial production (the
weights we use to calculate the aggregate effect of fiscal consolidations). What
goes wrong in this procedure? The ∆-method is an asymptotic result, which
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might provide a terrible approximation of a finite sample distribution. It all
boils down in finding a distribution which approximates well the small sample
one. If ρ̂downnT is very closed to the boundary and its asymptotically normal
standard errors are large, that is, they approach the boundary of Cdown then
we end up drawing values of ρdown which deliver unrealistically large values of
ATETB, because matrix (In − ρdown ·A)−1 becomes singular (the boundary is
one eigenvalue of A). This situation is described in Figure 13.

Figure 13: Explosive Solutions of ATETB

2. Prior Information

We have two extra “prior” pieces of information on the value of the spatial
parameters, ρdown and ρup:

i. Values of ρdown and ρup close to the boundaries will deliver unrealistically
high values of ATE, ADE and ANE, since the determinant of matrices
(In − ρdown · A) and (In − ρup · ÂT ) will approach zero by definition of
eigenvalue. In turn, the elements of their inverse matrices will explode,
as illustrated above. Therefore, we should assign less weight to values of
ρdown and ρup close to the boundaries.

ii. We know that industries that are close to each other in the production
network will co-move. For instance, if industry X faces increasing prices
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for its input, it will shrink production and increase prices; in turn, cus-
tomers of X will also face the same problem and will react similarly, by
reducing production and increasing prices. Therefore, the direction of
the spatial correlation among industries’ output is positive: ρdown > 0
and ρup > 0.

Model Estimation

We can integrate such prior information into our estimation and avoid non-
stationarity aggregate effects, by adopting a Bayesian MCMC similar to the
one introduced by LeSage and Parent (2007). We illustrate here how we im-
plement the Bayesian MCMC to estimate the parameters of Equation (6)
(baseline). The log-likelihood of that model is the one outlined above. The
priors we employ on the parameters are:

π(β) ∝ constant

Ω = σ2 · V with V = diag(v1, ..., vn)

π(σ2) ∝ 1

σ2

π(vi)
iid∼ Γ−1

(r
2
,
r

2

)
, i = 1, ..., n

ρdown ∼ Gen.Beta(d, d)

ρup ∼ Gen.Beta(d, d).

We adopt non-informative priors for σ2 and β to reflect our lack of information
around the values of these parameters. Concerning r, a lower value generates
more diffusion in the distributions of vi, thus regulating our confidence towards
heteroskedasticity. Unlike LeSage and Pace (2009), who suggest a value of 4,
we set r equal to 3 to reflect a strong belief towards heteroskedasticity. For
instance, industries in the Agriculture (NAICS 11) as well as Mining (NAICS
21) macro sectors, exhibit much higher volatilities than the rest of the indus-
tries.
We impose a “generalized (or non-standardized) Beta(d, d) prior”, with sup-
port from 0 to λ−1

max for ρdown and from 0 to λ̂−1
max for ρup. We follow LeSage

and Pace (2009) and set d equal to 1.1; which has the benefit of letting the
generalized Beta prior to resemble a Uniform distribution (diffuse prior), but
with low density at the boundaries, as illustrated in Figure 14. The choice of
such a prior allows us to be agnostic about the specific value of the spatial
parameters but at the same time it allows to embed the prior information we
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Figure 14: Generalized Beta prior
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Figure 14: line-plot of a non-standardized Beta(1.1, 1.1) density function, with support from
(0, λ−1

max(A) = 2.047) which we employ as a prior for the spatial parameter ρdown.

have into their estimates.
Furthermore, we assume that all the prior distributions are independent from
each other. We use the standard “Metropolis within Gibbs” algorithm, and
we obtain an approximation of the posterior densities for each parameter of
the model.
We now outline the precise steps of the procedure:

1. Initialization: Set up initial values for the parameters: β(0), σ
2
(0), V(0), ρ

down
(0) , ρup(0),

where V(0) = diag
(
v2

1,(0), ..., v
2
n,(0)

)
.

2. Gibbs Sampling:

a) Draw β(1) from the conditional posterior distribution, which is ob-
tained by mixing the likelihood with a normal prior with mean c
(a vector of zeros in our simulation) and covariance matrix L. In
order to not add any information, we simply set L to be equal to a
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diagonal matrix whose entries are infinite (1e12 in our simulation):

P (β(0)|D , σ2
(0), V(0), ρ

down
(0) , ρup(0)) = N (c∗, L∗) ∝ L (θ|D) ·N (c, L)

c∗ =
1

T
· (

T∑
t=1

X ′t · V −1
(0) ·Xt +

σ2
(0)

T
· L−1)−1 · ( 1

T
·

T∑
t=1

X ′t · V −1
(0) ·Ht ·∆yt +

σ2
(0)

T
· L−1 · c)

L∗ =
σ2

(0)

T
· (

T∑
t=1

X ′t · V −1
(0) ·Xt +

σ2
(0)

T
· L−1)−1

b) Draw σ2
(1) from the conditional posterior distribution, which is pro-

portional to likelihood times an inverse gamma distribution as a
prior:

P (σ2
(1)|D , β(1), V(0), ρ

down
(0) , ρup(0)) = Γ−1(

θ1

2
,
θ2

2
) ∝ L (θ|D) · Γ−1(a, b)

θ1 = nT + 2a θ2 =
T∑
t=1

ε′t · V −1
(0) · εt + 2b

In practice we draw σ2
(1) from θ2/χθ1 .

Notice that, setting a and b (the prior’s parameters) equal to 0, is
like putting a Jefferey’s prior on σ2. This is exactly what we do.

c) Draw vi,(1) from the following conditional posterior distribution,
proportional to an inverse gamma prior:

P (vi,(1)|D , σ2
(1), ρ

down
(0) , ρup(0)) = Γ−1(

q1

2
,
q2

2
) ∝ L (θ|D) · Γ−1(

r

2
,
r

2
)

q1 = r + T q2 =
1

σ2
(1)

·
T∑
t=1

ε2
i,t + r

In practice we draw vi,(1) from q2/χq1 .
As anticipated above in the paper, since we are confident on the
heteroskedastic behavior of industry value added, we set our prior
hyperparameter r to be equal to 3 rather than 4, as done in LeSage
and Pace (2009).
Replicating this procedure n times, we get a first simulation of
matrix V(1).

3. Metropolis-Hastings: We now need to draw the spatial coefficients.
However we cannot apply a simple Gibbs Sampling, since the conditional
posterior distribution is not defined for them. LeSage and Pace (2009)
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suggest the adoption of the Metropolis-Hastings algorithm to overcome
this problem. To ease notation we set ρ1 := ρdown and ρ2 := ρup. The
algorithm is the following:

(a) Draw ρc1 (where the c superscript stands for “candidate”) from the
(random walk) proposal distribution:

ρc1 = ρ1,(0) + c1 ·N (0, 1)

(b) Run a bernoulli experiment to determine the updated value of ρ1:

ρ1,(1) =

{
ρc1 π (accept)

ρ1,(0) 1− π (reject)

Where π is equal to π = min{1, ψMH1} and, setting: Aτ (ρ1) =
In − ρ1 ·W1, we have:

ψMH1 =
|Aτ (ρc1)|
|Aτ (ρ1,(0))|

· exp
{
− 1

2σ2
(1)

·
T1∑
t∈t1

[
∆y′t ·

(
Aτ (ρ

c
1)′ · V −1

(1) · Aτ (ρ
c
1)−

− Aτ (ρ1,(0))
′ · V −1

(1) · Aτ (ρ1,(0))
)
·∆yt−

− 2β′ ·X ′t · V −1
(1)

(
Aτ (ρ

c
1)− Aτ (ρ1,(0))

)
·∆yt

]}
·

·

[
(ρc1 − 0) · (λ−1

max − ρc1)

(ρ1,(0) − 0) · (λ−1
max − ρ1,(0))

]d−1

· 1
(
0 ≤ ρc1 ≤ λ−1

max

)
Basically, we compute the probability to accept the candidate value
from the proposal distribution, and then we update the value of
ρ1 by running the bernoulli experiment with such a probability of
success. Notice that if we draw a value of ρ1 outside the support of
the beta prior, ψMH1 = 0 and then π = 0 and we clearly reject the
candidate value.
We set d equal to 1.1, on both ρ1 and ρ2; this is done to resemble
a Uniform (0,1) but with less density on its boundary values.

(c) Once updated ρ1, we replicate the procedure for ρ2. SettingAγ(ρ2) =

70



In − ρ2 ·W2 we have:

ψMH2 =
|Aγ(ρc2)|
|Aγ(ρ2,(0))|

· exp
{
− 1

2σ2
(1)

·
T2∑
t∈t2

[
∆y′t ·

(
Aγ(ρ

c
2)′ · V −1

(1) · Aγ(ρ
c
2)−

− Aγ(ρ2,(0))
′ · V −1

(1) · Aγ(ρ2,(0))
)
·∆yt−

− 2β′ ·X ′t · V −1
(1)

(
Aγ(ρ

c
2)− Aγ(ρ2,(0))

)
·∆yt

]}
·

·

[
(ρc2 − 0) · (λ̂−1

max − ρc2)

(ρ2,(0) − 0) · (λ̂−1
max − ρ2,(0))

]d−1

· 1
(
0 ≤ ρc2 ≤ λ̂−1

max

)
(d) At this point we need to update the variance of the proposal distri-

butions: if the acceptance rate (number of acceptances over number
of iterations of the Markov Chain) of the first parameter ρ1 falls
below 40% we need to reduce the value of c1, the so called tuning
parameter, which regulates the variance of the proposal distribu-

tion. The variance is reduced by rescaling it: c′1 =
c1

1.1
. In this way,

we are able to draw values closer to the current state of ρ1, and
therefore, we expect to increase the acceptance rate.
On the contrary, if the acceptance rate rises above 60%, we need to
increase the tuning parameter, in order to draw values far from the
current state, in this way we increase the chance to explore more
the low-density parts of the distribution. We increase the variance
of the candidate distribution by scaling upward its standar devia-
tion: c′1 = 1.1 · c1.
Clearly we replicate this procedure also for ρ2.

4. Repeat: Once updated all the values, we replicate steps 2 and 3, 45,000
times to make sure the acceptance rate has converged.

5. Burn-in: we drop the first 35,000 iterations of the Markov Chain, thus
obtaining a vector of 10,000 observations for each of the parameters,
which account for the simulated posterior distributions.

C.4 Simulating the ATE, ADE and ANE

We construct via Monte Carlo the distribution of the ATE, ADE and ANE.
In particular we follow these steps:

1. (Parameters) Draw ρdown, ρup, τ and γ from their posterior distribu-
tions. To take into account the potential correlation among them, draw
from the same iteration of the Bayesian MCMC.
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2. (Style of the plan) Construct both a TB and an EB simulated fiscal
plan, by drawing the style from a distribution which mimics the empirical
one.

3. (Average effects) Construct ATE, ADE and ANE using the parame-
ters drawn in step 1 and the style drawn in step 2.

4. Repeat 100,000 times steps from 1 though 3, to make sure all the possible
combination of styles and parameters are simulated.

Step 2 allows us to claim that the baseline results reported in the paper are
robust to different styles of fiscal plans.

Empirical distribution of style of fiscal plans

We are interested in simulating a 2 years fiscal consolidation made of an unex-
pected part, no announced part and a single year future part to be implemented
in the second year of the simulation.
First of all, we want to simulate the unexpected part of the fiscal plan,
therefore, we need to look at those years when an unanticipated shock oc-
curs. Define the two sub-samples: TBu := {t : 1, ..., T | taxut > 0} and
EBu := {t : 1, ..., T | exput > 0}. Then calculate the mean and the standard
deviation of the unexpected component conditional on the occurrence of an
unexpected shock:

µτ := E(taxut | t ∈ TBu) στ :=
√

V(taxut | t ∈ TBu)

µγ := E(exput | t ∈ EBu) σγ :=
√

V(exput | t ∈ EBu)

In order to simulate a plausible unexpected component of the plan, we draw
them from the following distributions:

˜tax
u ∼ U (µτ − στ , µτ + στ )

˜expu ∼ U (µγ − σγ, µγ + σγ)

where the˜denotes a simulated component.
Concerning the future component, we need to predict what is the value of a
one year ahead policy change, conditional on the occurrence of an unexpected
policy change. Therefore, we run the following regressions:

taxft,1 = aτ + bτ · taxut with: t ∈ TBu

expft,1 = aγ + bγ · exput with: t ∈ EBu
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The estimates of aτ , bτ , aγ, bγ will be stored and used to predict values of

taxft,1 and expft,1, conditional on the occurrence of an unexpected component.
At this point we have all the ingredients to outline the steps we do in the
construction of a simulated style of the plan:

1. Draw unexpected components from their candidate distributions: ˜tax
u ∼

U (µτ − στ , µτ + στ ) and ˜expu ∼ U (µγ − σγ, µγ + σγ).

2. Predict the future component using the estimates of aτ , bτ , aγ, bγ. We

have: ˜tax
f

= âτ + b̂τ · ˜tax
u

and ˜expf = âγ + b̂γ · ˜expu.

3. Normalize the value to one: ˜tax
u

+ ˜tax
f

= 1 and ˜expu + ˜expf = 1.

For each iteration of the MC simulation used to approximate the posterior
distributions of the ATE, ADE and ANE, we repeat steps 1 through 3 to
simulate the style of the plan.
In the first year of the simulation we calculate the effects of TB and EB plans

with style given by: sTB = [ ˜tax
u

0 ˜tax
f
] and sEB = [ ˜expu 0 ˜expf ] respectively.

In the second year of the simulation, the future component of the shock is
rolled over and becomes an announced and implemented shock. Therefore we

calculate the effects of TB and EB plans with style given by: sTB = [0 ˜tax
f

0]
and sEB = [0 ˜expf 0] respectively.

D Estimates of Inverted Model

In this section we report the tables of estimates of the inverted model. Firstly,
Table VII shows the estimates of Equation (7).

D.1 Model Selection - Vuong Test for Static Spatial
Panel Data

We also provide results for a Vuong test of non-nested models, adapted to our
spatial specification, as in Wooldridge (2010).

Firstly, the Vuong test (see Vuong (1989)) is meant to discriminate be-
tween two misspecified and non-nested models. Basically, we assume there
is a hidden true model and we want to choose one of two competing non-
nested models which fit the data equally well. The Vuong test calculates and
compares the Kullback-Leibler distance between the two and the true model.
In practice, is a t-test on the KL divergence. One problem we encounter is
that it was developed for one-dimensional iid data, however, we deal with
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Table VII: Estimation Results

Inverted Model - Equation (7)

Parameters
MLE Bayesian MCMC - Posterior Distributions:

θ̂ML
i MLE Std. E(θi)

√
V(θi) Pr(θi < 0) 5% 10% 16% 50% 84% 90% 95%

ρup (TB) 0.554 0.103 0.528 0.097 0.000 0.368 0.405 0.432 0.528 0.625 0.653 0.687
τu 0.684 1.283 0.815 1.193 0.247 -1.143 -0.712 -0.372 0.814 2.002 2.351 2.778
τa -1.298 0.986 -1.290 0.919 0.920 -2.794 -2.463 -2.202 -1.293 -0.382 -0.112 0.225
τf -0.080 0.426 -0.084 0.391 0.585 -0.726 -0.585 -0.474 -0.082 0.301 0.415 0.562

ρdown (EB) 0.096 0.114 0.125 0.083 0.000 0.014 0.026 0.040 0.112 0.211 0.241 0.281
γu 0.073 1.126 0.050 1.034 0.480 -1.650 -1.272 -0.973 0.051 1.073 1.370 1.760
γa 1.286 0.617 1.296 0.567 0.011 0.361 0.572 0.732 1.295 1.861 2.023 2.226
γf -0.502 0.282 -0.499 0.259 0.973 -0.923 -0.831 -0.757 -0.499 -0.241 -0.169 -0.075

D2008 -2.984 0.674 -2.934 0.633 1.000 -3.973 -3.744 -3.562 -2.936 -2.307 -2.120 -1.891
D2009 -5.710 0.674 -5.371 0.661 1.000 -6.469 -6.216 -6.025 -5.368 -4.717 -4.529 -4.290

Table VII: θi denotes a generic parameter that we estimate. The columns report the following: θ̂ML
i is the ML point estimate; “MLE

Std.” is the standard deviation of the ML estimate, calculated using the analytical Fisher Information Matrix derived in Appendix C.2:√
I (θ̂ML)−1

ii ; E(θi) is the expected value of the posterior distribution;
√
V(θi) is the standard deviation of the posterior distribution;

Pr(θ < 0) is the probability that a parameter is negative, calculated by integrating the posterior distribution; p% is the p-th percentile
of the posterior distribution. For brevity we don’t report here the Industry Fixed Effects and the Industry specific variances. In the
first columns, the spatial parameters also report the type of fiscal plan they are interacted with (in blue).

a panel whose observations are serially uncorrelated but spatially correlated.
Wooldridge (2010) shows that the Vuong test can easily be extended to panel
data models by accounting for serial correlation in the time series.38 However,
in our problem the n×1 vector of industry observations is iid over time and our
asymptotic keeps the cross-sectional dimension, which is spatially correlated,
fixed, and then let the time series to go to infinite T → ∞. Economically
speaking this makes sense: we observe those fixed 62 industries over time,
however, the cross sectional dimension exceeds the times series one, 37 years.
This means that our finite sample distribution will not be a very good approx-
imation of the asymptotic one. However, this is the best we can do, given the
data availability.
Let’s derive now the Vuong Test. The quasi-log-likelihood of the baseline
model, Equation (6), is:

`t,B(ρ, β,Ω︸ ︷︷ ︸
θB

) = log fB(∆yt|Xt; θB) = −n
2

ln(2π)− 1

2
· ln(|Ω|)+

+ ln(|In − ρdown · A · TBt − ρup · Â′ · EBt|)−
1

2
· ε′t · Ω−1 · εt.

with:
εt =

(
In − ρdown A TBt − ρup Â′ EBt

)
·∆yt −Xt · β.

38See Section 13.11.2 - Model Selection Tests.

74



The sum of the quasi-log-likelihood evaluated at the MLE, θ̂B, for the baseline
model is: LB =

∑T
t=1 `t,B(θ̂B). Analogously, for the inverted model, Equation

(7), the quasi-log-likelihood is:

`t,I(ρ̃, β̃, Ω̃︸ ︷︷ ︸
θI

) = log fI(∆yt|Xt; θI) = −n
2

ln(2π)− 1

2
· ln(|Ω̃|)+

+ ln(|In − ρ̃down · A · EBt − ρ̃up · Â′ · TBt|)−
1

2
· ε′t · Ω̃−1 · εt.

with:
εt =

(
In − ρ̃down A EBt − ρ̃up Â′ TBt

)
·∆yt −Xt · β̃.

The sum of the quasi-log-likelihood evaluated at the MLE, θ̂I , for the inverted
model is: LI =

∑T
t=1 `t,I(θ̂I).

Following Wooldridge (2010), let’s define the estimator for the variance of the
KL divergence as:

η̂2 =
1

T
·

T∑
t=1

(
`t,B(θ̂B)− `t,I(θ̂I)

)2

.

Then, the Vuong Model Selection Statistic, VMS, is:

VMS = T−1/2 · (LB −LI)

η̂

=

1

T
·
∑T

t=1

(
`t,B(θ̂B)− `t,I(θ̂I)

)
√√√√ 1

T
·
∑T

t=1

(
`t,B(θ̂B)− `t,I(θ̂I)

)2

T

d−→ N(0, 1)

where the standard normal distribution holds under:

H0 : E[`t,B(θ∗B)] = E[`t,I(θ
∗
I )]

where θ∗B and θ∗I are the pseudo-true values of the parameters. Basically, the
null hypothesis is saying that the two potentially misspecified models fit the
data equally well. Notice that the test is super easy to implement: 1) define
the difference: d̂t = `t,B(θ̂B)− `t,I(θ̂I); 2. Regress d̂t on unity; 3. Run a t-test
to verify that the average of the difference is statistically different from zero.
We reject the null hypothesis in favor of a better fit to the data of the baseline
model if d̂t is statistically greater than zero. Notice that if this happens it
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does not mean that the baseline model is correctly specified (although it could
be), however, we can conclude that the baseline model fits better in terms of
expected likelihood.
The value we obtain is VMS = 0.033 which is clearly not statistically different
from zero. Even if positive sign of the statistics points at a better fit of the
baseline model against the inverted one, there is not enough statistical evidence
to claim that the baseline outperforms on average the inverted model.

D.2 Output Effect of Fiscal Plans in the Inverted Model

We report here the estimated posterior distributions of the ATE, ADE and
ANE for fiscal adjustment plans obtained from the estimates of Equation (7)
(inverted model).

Table VIII: Average Total, Direct and Network Effects of Fiscal Consolidations in the United States

Inverted Model - Equation (7)

E(θ) %
√
V(θ) Pr(θ < 0) 5% 10% 16% 50% 84% 90% 95%

ATETB -1.148 1 1.034 0.872 -2.909 -2.481 -2.162 -1.107 -0.131 0.140 0.480
ADETB -0.848 0.74 0.756 0.872 -2.106 -1.819 -1.593 -0.835 -0.101 0.107 0.375
ANETB -0.300 0.26 0.290 0.872 -0.828 -0.682 -0.572 -0.263 -0.029 0.030 0.102

ATEEB 0.522 1 0.337 0.064 -0.048 0.096 0.203 0.536 0.847 0.936 1.046
ADEEB 0.491 0.94 0.318 0.064 -0.044 0.089 0.188 0.501 0.799 0.886 0.990
ANEEB 0.031 0.06 0.032 0.064 -0.002 0.002 0.005 0.024 0.059 0.073 0.091

Table VIII: descriptive statistics of posterior distributions of Average Effects of a 2 years, 1% magnitude fiscal
adjustment plan. 2 years means that results are calculated by cumulating the effect of the first year of the plan
and then the second one. The style of the plan is simulated from a distribution which mimics the observed one;
see Appendix C.3 for technical details. Columns: E(θ) is the expected value of the posterior distribution; % is
the share of ATE represented by ADE and ANE.

√
V(θ) is the standard deviations of the posterior distribution;

Pr(θ < 0) is the probability of negative values, calculated by integrating the posterior distribution; “p%” is the
p-th percentile of the posterior distribution.

The most important thing to notice is that the ANE of EB plans accounts
for only 6% of their ATE, against the 12% of the baseline model. The relevance
of ANE of TB plans is basically unaffected, diminishing only by 1% relative
to the baseline (from 27% of the ATE to 26%). The statistical significance of
the ANE of TB plans declines, since the posterior distribution shrinks towards
zero.

E A Potential Theoretical Framework

We show here the theoretical framework which we have in mind when we refer
to the theoretical transmission of demand and supply shocks. The model is a
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slight modification of Acemoglu, Akcigit, and Kerr (2016), which we adapted
to allow for the propagation of a production tax.

The model considers a perfectly competitive economy with n sectors, where
the market clearing condition for the generic industry i is:

yi = ci +
n∑
j=1

xji +Gi (8)

where ci is household’s consumption of good produced by industry i; xij
39

is the quantity of goods produced in industry j used as inputs by industry i;
Gi are government purchases.

n∑
i=1

piGi = T + τ
n∑
i=1

piyi (9)

Each sector solves the following profit maximization problem:

max
li,{xij}nj=1

(1− τ) · pi ·

lαlii · (
n∏
j=1

x
αij
ij

)ρ
︸ ︷︷ ︸

yi

− wli −
n∑
j=1

pjxij

where τ is a sales/production tax which mimics an excise tax.40 Notice that
the production function is similar to the one in Acemoglu, Carvalho, et al.
(2012) and Carvalho (2014). All alpha’s are non negative, and we assume
constant return to scale: αli + ρ ·

∑n
j=1 aij = 1. Notice here, that thanks to the

Cobb-Douglas specification, ρ can be interpreted as the share of intermediates
in production.

The economy is populated by a representative agent, who maximizes utility
subject to a budget constraint:

max
l,{ci}ni=1

(1− l)λ ·
n∏
i=1

cβii s.t.
n∑
i=1

pici ≤ wl

39In Equation (8) we actually have xji, that is, the amount of good i used as input by
industry j; we then sum over the j-s to obtain the total demand of good i from all the
industries.

40For example, an excise is a special type of sales tax, which is sector-specific. Excise tax
might be of two types: ad valorem (percentage of values of a good) and specific (tax paid
per unit). The excise tax may be paid by the producer, retailer, and consumer. Moreover,
it might be taken on federal, state, and local levels.
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with
∑n

i=1 βi = 1.
Firms and households take all prices as given, and the market-clearing con-
ditions are satisfied in the goods market and the labor market. Government
actions are taken as given and the wage is chosen as a numeraire (w = 1) .

We do not explicitly model a government budget constraints, since during
years of fiscal consolidations, spending cuts are not compensated by tax re-
ductions and viceversa. For simplicity we also do not model government debt
and deficit.

Households. The household problems returns the following equilibrium con-
ditions:

pi · ci
βi

=
pj · cj
βj

∀i, j

l =
1

1 + λ

ci =
βi
pi
· 1

1 + λ
∀i

n∑
i=1

pi · ci =
1

1 + λ

Therefore, in equilibrium we have:

d log ci = −d log pi ∀i

that is, percent changes in consumption of good i only depend on percent
changes in the price of the same good (with Cobb-Douglas utility income and
substitution effects cancel out).

Firms Firms maximize profits and in equilibrium the following FOCs hold
true:

(1− τ) · pi · ρ · aij ·
yi
xij

= pj

(1− τ) · pi · ρ · ali ·
yi
li

= 1

yi = l
αli
i ·
( n∏
j=1

x
αij
ij

)ρ
Acemoglu, Akcigit, and Kerr (2016) notes that solving the dual problem (cost
minimization) and obtaining the unit cost function is beneficial to the analysis.
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The unit cost function is equal to:

C(p1, ..., pn) =

(
1

ali

)ali
·

(
n∏
j=1

(
1

ρ · aij

)aij)ρ

︸ ︷︷ ︸
:=Bi

(
n∏
j=1

p
aij
j

)ρ

.

Because of perfect competition, price equals marginal cost. Therefore:

(1− τ) · pi = C(p1, ..., pn)

By log differentiating the above expression, we have:

d log pi = ρ ·
n∑
j=1

aij · d log pj +
τ

1− τ
d log τ

The above expression implies that prices are affected only by changes in the
production tax τ . Moreover, from profit maximiation we also have:

ρ · aij =
1

1− τ
· pj · xij
pi · yi

∝ SALESj→i
SALESi

.

In other word, if sector i is affected by a tax shock, the effect is propagated
downstream to the customers, via xij. This should be clear if we substitute
the firm’s FOC condition into the previous expression:

d log pi =
1

1− τ
·

n∑
j=1

pj · xij
pi · yi

· d log pj +
τ

1− τ
d log τ.

E.1 Network effect of a tax shock

We want to know what is the output effect of a change in the production tax.
In order to do so, we need to look at the resource constraint (assuming for
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simplicity that Gi = 0 for all sectors):

yi = ci +
n∑
j=1

xji

yi
ci

= 1 +
n∑
j=1

xji
ci

plug in: xji = (1− τ) · pj · ρ · aji ·
yj
pi

(Firm FOC)

yi
ci

= 1 + (1− τ) · ρ
n∑
j=1

aji ·
pj · yj
pi · ci

plug in: ci =
βi
βj
· pj · cj

pi
(HH FOC)

yi
ci

= 1 + (1− τ) · ρ
n∑
j=1

aji ·
βi
βj
· yj
cj

Denote by: θi := yi/ci

θi = 1 + (1− τ) · ρ
n∑
j=1

aji ·
βi
βj︸ ︷︷ ︸

mij

·θj

Denote by M := [mij]i,j=1,...,n. Then, in matrix notation the above expression
becomes:

θ = 1n + (1− τ) · ρ ·M · θ =⇒ θ = (In − (1− τ) · ρ ·M)−1 · 1n

Notice that the equilibrium level of the output-to-consumption ratio, θi, has a
nice analytical form which, however, depends on τ . Therefore, when τ changes,
also this ratio changes and we don’t have d log yi = d log ci as in Acemoglu,
Akcigit, and Kerr (2016).

Differentiating the above expression yields:

dθ =
∂ (In − (1− τ) · ρ ·M)−1

∂τ
· 1ndτ

= −ρ · (In − (1− τ) · ρ ·M)−1 ·M · (In − (1− τ) · ρ ·M)−1 · 1ndτ

Using the d log notation:

d log θ = − τ · ρ ·Θ−1 · (In − (1− τ) · ρ ·M)−1 ·M · (In − (1− τ) · ρ ·M)−1︸ ︷︷ ︸
:=F

·1nd log τ

where Θ = diag(θ1, ..., θn). Recalling the definition of θi, we have:

d log y = d log c− F · 1n · d log τ =⇒ d log yi = d log ci − φi · d log τ
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where φi is the i-th element of vector F · 1n. Notice that if τ were fixed (i.e.
d log τ = 0), percent changes in consumption would be equal to the one of
output, as in Acemoglu, Akcigit, and Kerr (2016).

At this point we can find the relationship between output changes and tax
shocks. Consider the following three equations we derived earlier:

d log yi = d log ci − φi · d log τ

d log ci = −d log pi

d log pi = ρ ·
∑n

j=1 aij · d log pj +
τ

1− τ
d log τ

Combining the three equations above yields the following expression:

d log yi = ρ ·
n∑
j=1

aij · d log yj −

(
φi +

τ

1− τ
− ρ ·

n∑
j=1

φj · aij

)
︸ ︷︷ ︸

=ψi>0

·d log τ

= ρ ·
n∑
j=1

aij · d log yj − ψi · d log τ

which is Equation (4) in the paper.

E.2 Network effect of a spending shock

Suppose now that τ = 0 and that the government reduces its purchases from
all sectors (i.e. d logGi < 0). We want to find the relationship between the
percent change in output, d log yi and percent changes in government purchases
d logGi.

Consider the resource constraint of the economy:

yi = ci +Gi +
n∑
j=1

xji Log-differentiate

d log yi =
ci
yi

d log ci︸ ︷︷ ︸
=0 (d log pi=0)

+
Gi

yi
d logGi +

n∑
j=1

xji
yi
· d log xji (Firm FOC) xji = pjρaji

yj
pi

d log yi =
Gi

yi
d logGi + ρ ·

n∑
j=1

aji ·
pj yj
pi yi︸ ︷︷ ︸

:=âji

d log xji

d log yi =
Gi

yi
d logGi + ρ ·

n∑
j=1

âji · d log xji
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From the firm’s FOC, we have:

d log yi = d log pj︸ ︷︷ ︸
0

+d log xji − d log pi︸ ︷︷ ︸
=0

therefore we can retrieve Equation (2):

d log yi = ρ ·
n∑
j=1

âji · d log yj +
Gi

yi
d logGi.
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